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Detecting RNA base methylations in single cells by
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Methylated bases in tRNA, rRNA and mRNA control a variety of cellular processes, including

protein synthesis, antimicrobial resistance and gene expression. Currently, bulk methods that

report the average methylation state of ~104–107 cells are used to detect these modifications,

obscuring potentially important biological information. Here, we use in situ hybridization of

Molecular Beacons for single-cell detection of three methylations (m6
2A, m1G and m3U) that

destabilize Watson–Crick base pairs. Our method—methylation-sensitive RNA fluorescence

in situ hybridization—detects single methylations of rRNA, quantifies antibiotic-resistant

bacteria in mixtures of cells and simultaneously detects multiple methylations using multi-

color fluorescence imaging.
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It is becoming increasingly clear that methylated RNA bases
play key roles in all forms of life. It has been known for over 50
years that ribosomal RNA (rRNA) contains methylated bases1:

21 of the 35 post-transcriptional modifications to the Escherichia
coli ribosome include base methylations2, while 8 other methy-
lated bases confer antibiotic resistance by preventing binding of
protein synthesis inhibitors3. For example, the rRNA methyla-
tions catalyzed by Erm (forming N6-dimethyladenosine, m6

2A)4

and Cfr (forming 2,8-dimethyladenosine, m2,8A)5 both render
bacteria multi-drug resistant. Among the numerous modifications
to transfer RNA (tRNA), 1-methylguanosine (m1G) at position
37, which minimizes frameshift mutations during protein
synthesis6, is notable for being conserved across all kingdoms of
life. The observations that the fat mass and obesity-associated
(FTO) protein demethylates N6-methyladenosine (m6A), 3-
methyluridine (m3U) and 3-methylthymidine (m3T) in single-
stranded RNA7, 8 led to the realization that eukaryotic messenger
RNAs (mRNAs) undergo dynamic and widespread methylations
at N6 and N1 of adenine9–13, which likely regulate expression.
This flurry of recent discoveries has refocused attention on post-
transcriptional RNA modifications14, and spawned a new field:
epitranscriptomics.

The epitranscriptome lay underappreciated until the last 5–10
years because methods for detecting methylated bases were
unsuitable for studying mRNA. Conventionally, cellular RNAs
are digested to individual nucleosides that are separated by liquid
chromatography to identify modified bases, which are then put
into sequence context by a separate reverse transcription assay,
analyzed using gel electrophoresis15. These bulk methods have
detection limits in the femtomole to picomole range, which even
for abundant species like rRNAs therefore report the average
methylation state of ~104–107 cells16. Even state-of-the-art
methods for mapping modified bases—based on immunopreci-
pitation followed by next-generation sequencing—pool the
lysates from >104 cells17. In contrast, microscopy-based fluores-
cence in situ hybridization (FISH)18 is revolutionizing tran-
scription profiling by capturing cell-to-cell variation in mRNA
levels19, and revealing the sub-cellular distributions of specific
mRNAs on the basis of their unique nucleotide sequences20. In
situ hybridization techniques capable of detecting methylated
bases within specific RNAs could be similarly illuminating,
greatly enhancing our understanding of the biological roles of
individual methylations.

Here, we use in situ hybridization to detect epitranscriptomic
modifications at the single-cell level, exploiting the fact that
methyl groups on the Watson–Crick faces can impair base
pairing21, 22. Our approach deploys hybridization probes that are
sensitive to methylation of their complementary RNA sequences
as intracellular thermodynamic sensors. We call this method
“methylation-sensitive RNA fluorescence in situ hybridization”
(MR-FISH), which we validate in a series of methyltransferase-
knockout bacterial cell lines, focusing on rRNA methylations.
MR-FISH is sensitive to single methylations, and can characterize
the composition of heterogeneous mixtures of cells that differ
only in RNA methylation.

Results
Detecting tetramethylation by KsgA methyltransferase. In
designing a hybridization assay for methylation, we selected
Molecular Beacons (Supplementary Fig. 2)23. We reasoned that
these hybridization probes, which discriminate single-base
changes better than linear probes because they can form a hair-
pin structure rather than bind to a mismatched nucleic acid24,
might also be sensitive to methylation of a complementary
nucleic acid. We first tested whether a Molecular Beacon could

detect the tetramethylation catalyzed by the methyltransferase
(MTase) KsgA (Fig. 1a), one of the best-studied post-transcrip-
tional modifications of rRNA. KsgA dimethylates A1518 and
A1519 of 16S rRNA to form consecutive m6

2A bases, subtly
restructuring the 30S subunit of the ribosome;25 bacteria that lack
this modification are resistant to the aminoglycoside antibiotic,
kasugamycin26. Because the three states of Molecular Beacons
(hairpin structure, hybridized to the target and random coil) have
different fluorescence intensities due to changes in the
fluorophore–quencher distance (Supplementary Fig. 2), the sta-
bility of duplexes they form with different target sequences can be
measured by monitoring fluorescence during thermal melting.
This technique verified that a Molecular Beacon designed to
detect methylation by KsgA shows a transition for melting of an
RNA/DNA duplex with complementary unmethylated RNA, but
only a transition for melting of the hairpin loop in the presence of
tetramethylated RNA (Fig. 1c). This indicates that the impaired
base pairing of adjacent m6

2A nucleotides (Fig. 1b) inhibits the
binding of the methylation-sensitive probe.

To detect post-transcriptional modifications inside fixed cells,
we use two probes: a green-fluorescent (Alexa Fluor 488-labeled)
methylation-sensitive probe and a red-fluorescent (Alexa Fluor
647-labeled) probe that binds the same rRNA strand, at a
sequence remote from the modification site that does not undergo
methylation. This red-labeled methylation-insensitive probe acts
as an internal calibrant, meaning that the red/green ratio of each
cell—rather than the green intensity alone—indicates the extent
of methylation. This ratio distinguishes between cells with a high
proportion of methylated rRNA and cells which simply have a
low concentration of rRNA (Fig. 1d). To investigate whether MR-
FISH distinguishes between cells with highly methylated and
unmethylated ribosomes, we used an E. coli which expresses all
constitutive rRNA MTases (parent strain BW25113), and a
mutant of this strain in which the KsgA MTase is deleted
(ΔksgA), confirming the methylation state of each cell type by
high-performance liquid chromatography (HPLC; Supplementary
Fig. 3). Both bacteria fluoresce red due to the methylation-
insensitive probe, but only the ΔksgA cells, with A1518 and
A1519 of 16S rRNA unmethylated, are brightly stained green by
the methylation-sensitive probe (Fig. 1e). Automated analysis of
the wide-field epifluorescence images (Methods, Supplementary
Fig. 4) allows us to extract fluorescence intensities of hundreds of
single cells in both color channels, which quantitatively confirms
that MR-FISH distinguishes between cells with methylated and
unmethylated ribosomes (Fig. 1f). Timecourses of hybridization
show that ΔksgA cells can be distinguished from the parent strain
after 30 min, but that they are best discriminated after ≥4.5 h,
when the ratio of their green fluorescence intensities is > 10
(Supplementary Fig. 5). The fluorescence of the methylation-
sensitive probe is selectively reduced in the presence of excess
unlabeled oligonucleotide with the same sequence, confirming
that the signal results primarily from hybridization, rather than
non-specific binding to cellular components or autofluorescence
(Supplementary Fig. 10). When the red/green ratios of individual
cells are extracted from MR-FISH image data, each cell type
displays a log-normal distribution (Fig. 1g and Supplementary
Fig. 6), which unambiguously discriminates between cells with
tetramethylated and unmethylated ribosomes in replicate mea-
surements (Fig. 1h and Supplementary Fig. 7).

MR-FISH is sensitive to single methylations. We then chal-
lenged MR-FISH to detect single methylations of rRNA using the
same parent strain and two additional mutants, from which two
other constitutive MTases are deleted: RrmA and RsmE, which
respectively catalyze introduction of 1-methylguanine (m1G) at
G745 in 23S rRNA27, and 3-methyluridine (m3U) at U1498 in
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16S rRNA28. Methylation-sensitive probes for each modification
discriminate well between methylated and unmethylated syn-
thetic RNAs, but unlike the tetramethylated KsgA target
sequence, fluorescence melting showed evidence of duplex for-
mation between both methylation-sensitive beacons and their
singly methylated RrmA and RsmE target sequences (Fig. 2a, b).
The duplex formed by the RsmE target containing a single m3U
base was stable enough to thermodynamically characterize,
showing it to be destabilized by ~20 kJ mol−1 compared with its
unmethylated counterpart, which decreases its melting tempera-
ture by ~17 °C (Supplementary Fig. 2). Nevertheless, MR-FISH
detected both methylated bases inside fixed cells, although a
higher formamide concentration (30% vs. 20%) was required to
discriminate the less-destabilizing m3U modification (Fig. 2c–f,
Supplementary Figs 8 and 9). These data show that MR-FISH can
detect even single methylations of RNA.

Characterizing mixtures of cells with different methylation
states. A major advantage of detecting epitranscriptomic mod-
ifications on a cell-by-cell basis, rather than in lysates pooled from
thousands or millions of cells, is the potential to study hetero-
geneous populations without separating them first. To demon-
strate this concept, we used MR-FISH to characterize the
composition of mixtures of E. coli and the kasugamycin-resistant
derivative ΔksgA. We first combined different ratios of separately
cultured samples of each strain and analyzed the mixtures using
MR-FISH. Fitting the resulting two-color-ratio histograms with
bimodal Gaussian distributions returns compositions that are in
excellent agreement with the known proportions of parent strain
and ΔksgA cells (Fig. 3a–c). Next, we measured the composition
of a co-culture of these bacteria using MR-FISH, which was in
good agreement with that determined by colony counting
(Fig. 3d–g). The greater precision of our single-cell approach—
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reflected in the smaller standard deviation of the measured
fraction (Fig. 3g)—is in line with that expected from Poisson
statistics, because 450–850 cells are counted per measurement
compared with 25–100 colonies.

Finally, we combined methylation-sensitive Molecular Beacons
to demonstrate simultaneous detection of two methylations using
multicolor imaging (Fig. 4). We multiplexed MR-FISH using a
probe cocktail comprising an Alexa-Fluor-647-labeled-methyla-
tion-insensitive probe, an Alexa-Fluor-488-labeled probe sensitive
to KsgA methylation and a Cy3-labeled probe sensitive to RrmA
methylation (Fig. 4a). A mixture of bacteria containing either of
these methylations (ΔksgA or ΔrrmA) or both methylations
(parent strain) are therefore stained with different color
combinations: either Alexa Fluor 647 and Alexa Fluor 488
(ΔksgA), Alexa Fluor 647 and Cy3 (ΔrrmA), or Alexa Fluor 647
only (parent strain) (Fig. 4b). Comparison to pure samples of
each bacterium confirms that MR-FISH can accurately identify
the components of a complex mixture of bacteria with multiple
different methylation states (Fig. 4c, d and Supplementary
Fig. 11).

Discussion
This work demonstrates the detection of methylated bases in
RNA at the single-cell level. MR-FISH is sensitive to single
methylations, and can characterize the composition of mixtures
of cells with different RNA methylation states. Our results show
excellent discrimination between cells with and without specific

methylations; further studies will establish the sensitivity of MR-
FISH to different degrees of methylation. Three different
methylations have been detected here, but in its current form, our
hybridization-based approach will not be applicable to mod-
ifications that do not affect Watson–Crick base pairing, such as 5-
methylcytidine (m5C) or pseudouridine. On the other hand, m1A
has recently been shown to substantially disrupt RNA duplexes29,
while m6A forms a “spring-loaded” base pair containing a steric
clash between the N6-methyl group and N722. Encouragingly, we
have confirmed that the presence of m6A does destabilize duplex
formation with a Molecular Beacon, but to a lesser degree than
the other modifications detected here (Supplementary Fig. 12).

The fact that standard epifluorescence microscopes can be used
to detect methylation of abundant RNAs (Supplementary Fig. 13)
as well as its simplicity (Supplementary Fig. 14) makes MR-FISH
accessible to wide range of users. For example, our method could
enable basic research into antibiotic resistance conferred by
methylated bases in single or mixed bacterial populations. In
particular, MR-FISH could reveal the extent of methylation
needed for resistance and stochastic cell-to-cell variation within
resistant populations, as well as offering a way to screen
methyltransferase inhibitors inside cells with a molecular readout.
The fact that MR-FISH requires simple optical equipment, is
capable of multiplexing and can identify specific rRNA methy-
lations in cells after only 30 min also highlights its potential in
diagnostic tests for antibiotic-resistant bacteria. In future appli-
cations, the abundance of the RNA of interest will determine the
most appropriate imaging mode. In exponentially growing
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bacteria as measured here, rRNAs are present at ~50,000 copies/
cell (~50 µM)30, which enables single-cell measurements with
epifluorescence microscopy. Individual bacterial tRNAs are pre-
sent at concentrations of 1–30 µM31, so should be detectable in

the same way. At the other end of the scale, detecting any specific
endogenous mRNA—typically present at <1–30 copies per
eukaryotic cell32, 33—inherently requires single-molecule imple-
mentation of MR-FISH, which could be used to investigate
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epitranscriptomic variation between cells and how methylation
influences the spatial distribution of mRNA.

MR-FISH has distinct advantages and disadvantages compared
with existing techniques. While the need for pre-existing
knowledge of the locations of methylated bases to design
methylation-sensitive probes and the finite multiplexing capacity
of FISH make it unsuitable for transcriptome-wide discovery of
base methylations, MR-FISH offers the ability to analyze
methylation in large numbers of single cells, including hetero-
geneous populations and/or tissue samples. Alongside
sequencing-based techniques that identify modifications17, and
chemical probes that establish their structural effects34, MR-FISH
promises to add another dimension to studies of methylated
bases, by capturing cell-to-cell variation and potentially revealing
the sub-cellular locations of specific methylated RNAs.

Methods
Materials. The E. coli strain BW25113 (parent strain) was purchased from
ThermoFisher Scientific (Ulm, Germany). Three derivatives of this strain: JW0050-
3 with specific deletion of the ksgA gene (ΔksgA); JW1181-1 with specific deletion
of the rrmA gene (ΔrrmA); and JW2913-1 with specific deletion of the rsmE gene
(ΔrsmE), were sourced from the Coli Genetic Stock Centre (Yale, USA)35, 36.
Bacterial growth medium was purchased from Appleton Woods (Birmingham,
UK) and was prepared by dissolving in deionized water followed by autoclaving at
121 °C for 20 min. Phosphate-buffered saline (PBS) tablets, sodium chloride, tris
(hydroxymethyl)aminomethane hydrochloride (Tris-HCl), sodium dodecyl sulfate
(SDS), diethyl pyrocarbonate (DEPC), formamide, benzamidine, phe-
nylmethylsulfonyl fluoride (PMSF), magnesium chloride, ammonium chloride,
kanamycin, paraformaldehyde, 2-mercaptoethanol and sucrose were purchased
from Sigma Aldrich (Gillingham, UK). The 125:24:1 phenol/chloroform/isoamyl
alcohol mixture and chloroform were purchased from ThermoFisher Scientific
(Paisley, UK). P1 nuclease, bacterial alkaline phosphatase, unmethylated nucleoside
standards (A, C, G and U) were purchased from Sigma Aldrich, methylated
nucleoside standards (N6-dimethyladenosine, 1-methylguanosine and 3-methy-
luridine) from Carbosynth (Compton, UK) and HPLC-grade solvents from VWR
International Ltd (Lutterworth, UK). To avoid degradation of RNA, stock solutions
of all buffer components (except formamide) for fluorescence melting and FISH
were prepared using 0.1% DEPC to inactivate RNases and then autoclaved to
decompose DEPC prior to use. All microcentrifuge tubes and pipette tips used were

certified RNase free and bench surfaces cleaned with RNaseZAP™ according to the
manufacturer’s instructions (Sigma Aldrich). The sequences and code names of all
oligonucleotides used in this work are given in Table 1, while structures of modified
nucleosides, fluorophores and quenchers are given in Supplementary Fig. 1. RNA
oligonucleotides (synthesized on the 1 µmol scale and purified by denaturing
polyacrylamide gel electrophoresis) were purchased from Dharmacon/GE
Healthcare (Little Chalfont, UK); their identities were also confirmed by digestion
to nucleosides followed by HPLC (Supplementary Fig. 3). Molecular Beacons
(synthesized on the 0.2 µmol scale and purified by double HPLC) were designed
with the aid of the mfold and DINAMelt web servers37–39, and purchased from
ATDBio (Southampton, UK). Unlabeled DNA oligonucleotides (synthesized on
either 0.2 or 1 µmol scale and purified by HPLC) were purchased from Sigma
Aldrich. Lyophilized oligonucleotides received from the suppliers were dissolved
in DEPC-treated deionized water to concentrations of 20–100 µM as confirmed
by OD260 (Nanodrop 2000, ThermoFisher Scientific) and aliquots stored
at −20 °C.

Thermodynamic characterization of methylation-sensitive Molecular Bea-
cons. Fluorescence melting curves of Alexa-Fluor-488-labeled-methylation-sensi-
tive probes (concentrations: 2.5 µM (KsgA MB and RlmJ MB) or 2 µM (RrmA MB
and RsmE MB)) in the presence and absence of methylated and unmethylated
RNA targets (concentrations: 0, 5, 10, 15, 20, 30 and 35 µM (KsgA UM and KsgA
Me), or 0, 25, 30, 35, 40, 45 and 50 µM (RrmA UM, RrmA Me, RsmE UM and
RsmE Me), or 0, 15, 20, 25, 30, 35 and 40 µM (RlmJ UM and RlmJ Me) in buffer
(1× PBS (KsgA MB) or 1× PBS with 1M NaCl (RrmA MB, RsmE MB and RlmJ
MB)) were recorded using a Roche LightCycler® 480, using the fluorescein filter set
(exciting at 465 nm and measuring fluorescence at 510 nm). Samples were prepared
in a 96-well plate (LightCycler® 480 Multiwell Plate 96, white, Roche, West Sussex,
UK) in a total volume of 20 μL. For experiments in the absence of RNA targets (i.e.,
Molecular Beacon only), samples were heated to 95 °C, held at this temperature for
10 min, cooled from 95 °C to 37 °C at a rate of 1 °C min−1, held at 37 °C for 10 min
and heated from 37 °C to 95 °C at a rate of 1 °C min−1. For experiments in the
presence of RNA targets, slower rates of heating/cooling were required to avoid
hysteresis: samples were heated to 95 °C, held at this temperature for 10 min and
then cooled in steps of 0.2 °C at 0.5 °C min−1 to 37 °C. Samples were then held at
37 °C for 10 min before being heated to 95 °C, again in steps of 0.2 °C at a rate of
0.5 °Cmin−1. The fluorescence intensity was recorded for both the cooling
(annealing) and heating (melting) phases and compared to confirm minimal
hysteresis. Five technical replicates were performed under each condition.

Melting temperatures (Tb or Td) were extracted using a script written in
MATLAB. For each melting curve, an approximate first derivative was calculated,
to which a single-term Gaussian function was fitted, with start and end points

Table 1 Sequences of synthetic oligonucleotides

Code name Sequence (5’–3’)

RNAs
KsgA UM GUAACCGUAGGGGAACCUGCGGUUGGAUCAC
KsgA Me GUAACCGUAGGGGm6

2Am6
2ACCUGCGGUUGGAUCAC

RrmA UM GAACCGACUAAUGUUGAAAAAUUAGCG
RrmA Me GAACCGACUAAUm1GUUGAAAAAUUAGCG
RsmE UM GGGUGAAGUCGUAACAAGGUAACCG
RsmE Me GGGUGAAGUCGm3UAACAAGGUAACCG
RlmJ UM UUGAACUCGCUGUGAAGAUGCAGUGUACCCG
RlmJ Me UUGAACUCGCUGUGm6AAGAUGCAGUGUACCCG
DNAs
KsgA MB Alexa Fluor 488-CCGCCCCGCAGGTTCCCCTACGGCGG-DABCYL
RrmA MB Alexa Fluor 488-CCGCCGTTTTTCAACATTAGTCGGCGG-DABCYL
RrmA MB-Cy3 Cy3-CCGCCGTTTTTCAACATTAGTCGGCGG-BHQ2
RsmE MB Alexa Fluor 488-CGCGCCTTGTTACGACTTCGGCGCG-DABCYL
RlmJ MB FAM-CGCGCATCTTCACAGCGCG-DABCYL
16S MB Alexa Fluor 647-CACTCCGCTGCCTCCCGTAGGAGTG-BHQ1
16S MB-G Alexa Fluor 488-CACTCCGCTGCCTCCCGTAGGAGTG-DABCYL
23S MB Alexa Fluor 647-CGGCGAGCAAGTCGCTTCACCTACATATCGCCG-BHQ1
KsgA BLK CCGCCCCGCAGGTTCCCCTACGGCGG
RrmA BLK CCGCCGTTTTTCAACATTAGTCGGCGG
RsmE BLK CGCGCCTTGTTACGACTTCGGCGCG
HLP1 AGTGGTAAGCGCCCTCCCGA
HLP2 ACCCCAGTCATGAATCACAA
HLP3 GCAGGTTCCCCTACGGTTA
HLP4 TAAGGAGGTGATCCAACC

RNA nucleotides complementary to MB sequences are shown in italics, with methylated bases or bases whose methylation is catalyzed by MTase shown in bold italics. DNA nucleotides complementary
to rRNA sequences are shown in italics, with nucleotides complementary to bases methylated by the relevant methyltransferase in bold italics. The self-complementary sections of Molecular Beacons
that fold into the stem are underlined. The structures of modified nucleosides, fluorophores and quenchers are given in Supplementary Fig. 1
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determined by user input and fit quality assessed by visual inspection. The center of
the fitted Gaussian was taken to be the melting temperature.

The thermodynamics of hairpin melting (transition 2→ 3, Supplementary
Fig. 2a) were analyzed as in Bonnet and Tyagi24, using the variation of fluorescence
intensity with temperature (in the absence of target) to find the equilibrium
constant at each temperature, using Eq. 1 (where F is the fluorescence measured at
a given temperature, α is the fluorescence of the hairpin structure (the fluorescence
measured at 37 °C) and β is the fluorescence of the random coil structure
(fluorescence measured at 95 °C), Supplementary Fig. 2d).

K2�3 ¼ F � α

β � F
; ð1Þ

R ln
F � α

β � F

� �
¼ R lnK2�3 ¼ ΔH�

2�3
1
T
þ ΔS�2�3: ð2Þ

The equilibrium constant in this form can be used to find the thermodynamic
parameters for the transition, assuming no variation of thermodynamic parameters
with temperature and no populated intermediates between the hairpin and random
coil structures. A plot in the form of Eq. 2 (where T is the temperature in K) was
used to calculate the standard enthalpies (ΔH°2-3 in J mol−1) and entropies (ΔS°2–3
in J mol−1 K−1) of the hairpin melting transitions by linear fitting in Excel
(Microsoft Corporation, Redmond, Washington, USA) or OriginPro (OriginLab
Corporation, Northampton, Massachusetts, USA), and hence ΔG°2–3
(Supplementary Fig. 2e and g).

Thermodynamic parameters for the duplex to hairpin transition (transition 1→ 2,
Supplementary Fig. 2a) were calculated as in Bonnet and Tyagi24. A plot in the form
of Eq. 3 (where R is the gas constant, T0 is the target concentration, B0 is the beacon
concentration, Td is the melting temperature for this transition) was used to calculate
the standard enthalpies (ΔH°1–2 in J mol−1) and entropies (ΔS°1–2 in J mol−1 K−1) of
the hairpin melting transitions by linear fitting in Excel or OriginPro (Supplementary
Fig. 2c and f).

R ln T0 � 0:5B0ð Þ ¼ �ΔH�
1�2

1
Td

þ ΔS�1�2: ð3Þ

Bacterial culture and fixation. Biological replicates were prepared by streaking a
glycerol stock onto LB agar and individual colonies picked and cultured overnight
at 37 °C in LB broth, supplemented with kanamycin (30 µg mL−1) for growth
JW0050-3 (ΔksgA), JW1181-1 (ΔrrmA) and JW2913-1 (ΔrsmE). The overnight
culture was subsequently used as a 1% inoculum into fresh LB broth without
antibiotics which was incubated at 37 °C in an orbital shaker until the OD600 was
0.5–0.7. One volume of 4% formaldehyde (freshly prepared from paraformalde-
hyde) in PBS (pH 6.9) was then added directly to bacterial culture (7.5 mL,
approximately 4.5 × 109 colony-forming units) and the resulting suspension
incubated at room temperature for 90 min. Inactivated bacterial cells were then
pelleted by centrifugation, washed three times in PBS (10 mL) and suspended in
50% ethanol/PBS (1 mL) yielding approximately 4.5 × 109 fixed cells per mL, which
were stored at −20 °C until required.

Bacterial co-culture and colony counting. Single colonies of BW25113 (parent
strain) and JW0050-3 (ΔksgA) were picked and cultured separately overnight at
37 °C in LB broth, without antibiotics. The overnight cultures were used to
inoculate a single flask containing 100 mL of sterile LB broth without antibiotics to
a starting OD600 of 0.005 absorbance units for each strain. The mixed culture was
then incubated at 37 °C in an orbital shaker until the OD600 was 0.5–0.7, at which
point 7.5 mL of culture was removed and fixed as described above. The ratio of
parent/ΔksgA was determined by diluting the culture by a factor of 106 in sterile LB
broth and spreading 200 μL onto LB agar plates with or without 30 μg mL−1

kanamycin. Colonies were counted after 18 h of incubation at 37 °C.

16S ribosomal RNA purification. Single colonies BW25113 (parent strain) and
JW0050-3 (ΔksgA) were picked and grown overnight at 37 °C in LB broth, sup-
plemented with kanamycin (50 µg mL−1) for growth of the ΔksgA strain. The
overnight culture was used as a 1% inoculum into pre-warmed LB medium (4 ×
1000 mL in 2 L flasks) and cultured without antibiotics until the OD600 was 0.5–0.6.
The cells were harvested and pellets washed twice by resuspension in PBS (50 mL),
prior to being flash-frozen for storage at −80 °C. The ribosome purification pro-
tocol was modified from a previously published method40. All buffers were sup-
plemented with 0.1 mM benzamidine and 1 mM PMSF directly before use. Cell
pellets were thawed on ice, resuspended in 15 mL buffer C (20 mM Tris pH 7.5, 10
mM MgCl2, 200 mM NH4Cl, 6 mM 2-mercaptoethanol) and lysed using an
Emulsiflex-C3 homogenizer (Avestin, CAN). The resulting lysate was cleared by
pelleting debris twice for 30 min at 30,000×g at 4 °C in an F21-8×50y rotor
(Thermo Fisher). The resulting supernatant was layered on a 40 mL sucrose
cushion (buffer C adjusted to 500 mM NH4Cl, 1.1 M sucrose) and ribosomes
pelleted for 18 h at 142,000×g at 4 °C in a 45 TI rotor (Beckman Coulter). Pellets
were washed twice and resuspended for 1 h under gentle agitation in 1 mL buffer D
(buffer C adjusted to 1M NH4Cl). In order to separate the 70S ribosomes into 30S
and 50S subunits, the samples were dialyzed overnight at 4 °C against 20 mM Tris

pH 7.5, 1 mM MgCl2, 200 mM NH4Cl, 6 mM 2-mercaptoethanol. Six 10–30%
sucrose gradients in buffer D were prepared for each sample, using a Gradient
Station IP (Biocomp, USA). Each gradient was prepared in advance, layered with
100–150 μL of sample (~150 A260 units) and spun at 58,200×g in a SW28 rotor
(Beckman Coulter) for 18 h at 4 °C. Fractions corresponding to the 30S and 50S
subunits were separately diluted to 60 mL in buffer C and pelleted for 18 h at
142,000×g at 4 °C in a TI 45 rotor. The pellets were resuspended in 250 μL RNase-
free water and flash-frozen for storage. Purified 30S ribosomal subunits were
washed twice with 1 vol. of 125:24:1 phenol/chloroform/isoamyl alcohol pH 4.5
followed by once with 1 vol. chloroform. RNA was ethanol precipitated by adding
0.1 vol. of 3 M sodium acetate followed by 2 vol. of ice-cold ethanol and pelleted by
centrifugation in a bench top microcentrifuge (10 min, maximum speed). The RNA
was dissolved in water (40 μL) and used immediately in RNase digestion reactions.

RNase digestion. Purified rRNA (9–50 ng μL−1) or synthetic oligonucleotides (25
μM) were dissolved in water. Digestion reactions were prepared by addition of
ammonium acetate buffer (20 mM, pH 7) and P1 nuclease (0.5 U), followed by
incubation at 45 °C for 4 h. The reaction was then cooled to room temperature,
bacterial alkaline phosphatase (150 U) added followed by incubation at 37 °C for a
further 2 h. Proteins were precipitated by addition of perchloric acid (1% final vol.)
and pelleted by centrifugation (20 min, maximum speed). Supernatants were
immediately analyzed by HPLC.

HPLC analysis. A fully automated Shimadzu Prominence platform, operated
through LabSolutions software, was used for all HPLC analyses. The platform
consisted of a LC-20AD ternary, low-pressure mixing solvent delivery system with
a DGU-20A inline degasser, SIL-20AHT variable volume auto-injector and auto-
sampler, SPD-M20A diode array detector and CTD-10ASVP heated column oven.
HPLC-grade solvents were used for preparing the mobile phase. Peaks were
identified by comparing their retention times with standards prepared from
commercially sourced nucleosides. For analysis of digested and undigested syn-
thetic RNA oligonucleotides, the HPLC conditions shown in Table 2 were used. For
nucleoside quantification in digested samples, the integrated peak area was com-
pared to a dilution series prepared from commercially sourced nucleosides. For
analysis of digested 16S ribosomal RNA, the HPLC conditions shown in Table 3
were used.

Fluorescence in situ hybridization. The protocol for FISH was adapted from
Valm et al.41. Fixed E. coli cells were first washed with wash buffer A (0.9 M NaCl,
0.02 M Tris, pH 7.5, 0.01% SDS and 20% v/v formamide) and then resuspended at
6.75 × 106 cells per μL in 20 μL hybridization buffer (0.9 M NaCl, 0.02M Tris, pH
7.5, 0.01% SDS, formamide (20% v/v for detecting KsgA and RrmA modifications,
30% v/v for detecting RsmE modification), Alexa-Fluor-647-labeled-methylation-
insensitive Molecular Beacon (1 μM 16S MB for detecting KsgA and RsmE mod-
ifications, 1 μM 23S MB for detecting RrmA modification), Alexa-Fluor-488-
labeled-methylation-sensitive Molecular Beacon (1 μM KsgA MB, 1 μM RrmA MB
or 2 μM RsmE MB); unlabeled helper oligonucleotides that bind to rRNA, adjacent
to the methylation-sensitive probe, were included for detection of RsmE mod-
ification (2 μM HLP1, HLP2, HLP3 and HLP4); for experiments to test whether
green fluorescence results from hybridization (Supplementary Fig. 10), unlabeled

Table 2 HPLC conditions for analysis of digested and
undigested synthetic RNA oligonucleotides

Column: Waters XSelect HSS T3, 100 Å, 3.5 µm, 3.0 × 150mm

Column temperature: 30 °C

Flow rate: 0.7 mLmin−1

Injection volume: 8 μL

Step
time / min

Mobile phase composition / %

A
(water)

B
(acetonitrile)

C (0.2M NH4OAc,
pH 6, 25% acetonitrile)

0 89 1 10
2.5 89 1 10
5.5 80 10 10
10 40 50 10
10.1 10 80 10
11 10 80 10
11.1 89 1 10
20 89 1 10
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Molecular Beacons were added (10 μM KsgA BLK, 10 μM RrmA BLK or 20 μM
RsmE BLK)). For three-color multiplexed detection of KsgA and RrmA methyla-
tions, the hybridization buffer contained Alexa-Fluor-647-labeled-methylation-
sensitive Molecular Beacon (1 μM 23S MB) and two methylation-sensitive Mole-
cular Beacons (1 μM Alexa-Fluor-488-labeled KsgA MB and 1 μM RrmA MB-
Cy3). To assess the influence of hybridization stoichiometry on cell-to-cell varia-
tion of the two-color ratio (Supplementary Fig. 6), hybridization buffer containing
two methylation-insensitive Molecular Beacons was used (1 μM Alexa-Fluor-647-
labeled 16S MB and 1 μM Alexa-Fluor-488-labeled 16S MB-G). Samples were
incubated at 37 °C for the appropriate length of time (0.5, 1, 2, 3, 4.5, 6, 11, 16 or
21 h for the timecourse data shown in Supplementary Fig. 5, 21 h for all other
experiments detecting KsgA and RrmA modifications and 18 h for detection of
RsmE modification) with agitation at 200 rpm. Cells were then washed at 37 °C
with agitation at 200 rpm in 30 μL wash buffer A for 15 min, 30 μL wash buffer B
(0.9 M NaCl, 0.02M Tris, pH 7.5, 0.01% SDS) for 15 min and then resuspended in
10 μL imaging buffer (0.025M NaCl, 0.02M Tris, pH 7.5). Then, 5 μL of this cell
suspension was added to a coverslip (22 × 22 mm, thickness 0.13–0.17 mm, Menzel
Gläser, pre-cleaned with argon plasma for at least 30 min (Femto Plasma Cleaner;
Diener Electronic, Royal Oak, MI, USA) and subsequently attached to a Frame-Seal
slide chamber (9 × 9 mm, Biorad, Hercules, CA, USA)), and a drop of mounting
medium (Hydromount slide mounting medium, Fisher Scientific) was applied.
Samples were then sealed with another plasma-cleaned coverslip and allowed to set
for at least 30 min at room temperature before imaging.

Fluorescence microscopy. Two-color fluorescence images except those used to
generate Supplementary Fig. 6 were acquired using a microscope previously
described42. A HeNe laser (633 nm, 10 mW, 25-LHP-991-230, Melles Griot,
Carlsbad, USA) and a diode laser operating at 488 nm (20 mW, PC13589, Cyan
Scientific, Spectra Physics, Santa Clara, USA) were directed into an objective lens
(Plan Fluor 20× air, numerical aperture (NA) 0.50, Nikon for all data except those
in Supplementary Fig. 13, where two other objectives were used for comparison:
CFI Plan Apochromat λ 40× air, NA 0.95 and 60× Plan Apo TIRF oil immersion,
NA 1.45, both by Nikon) mounted on an Eclipse TE2000-U microscope (Nikon),
parallel to the optical axis in epifluorescence mode. Emitted fluorescence was
collected by the same objective and separated from excitation light by a dichroic
mirror (FF500/646-DiO1; Semrock, Rochester, USA). Green and red fluorescence
were separated from each other and filtered by a second dichroic mirror and filter
sets (FF605-Di02, Roper Scientific, USA, FF03-525/50-25 (green emission), BLP01-
635R-25 (red emission), all from Semrock), mounted on a Dual-View imaging
system (Photometrics, Tucson, USA). Fluorescence emission was recorded on an
EMCCD camera (Cascade II:512, Photometrics), cooled to −70 °C; each color was
recorded on a separate half of the chip. Data (30–100 images per sample) were
acquired in grids of four or five successive images (separated by 200 µm for images
acquired using the 20× objective and 90 µm for images acquired using the 40× and
60× objectives), first under 633 nm illumination (with exposure times of 200 ms for
KsgA data, 200 ms for RrmA data and 200 ms (20× objective), 50 ms (40× objec-
tive) or 25 ms (60 × objective) for RsmE data), then under 488 nm illumination
(with exposure times of 200 ms for KsgA data, 600 ms for RrmA data and 200 ms
(20×), 50 ms (40×) or 25 ms (60×) for RsmE data) using a motorized stage
(Optiscan system, Prior Scientific, Cambridge, UK), controlled with

Micromanager43. Out-of-focus images were discarded during acquisition, i.e.,
before analysis.

Three-color fluorescence images for multiplexed detection of methylations
(Fig. 4 and Supplementary Fig. 11) and two-color images used to generate
Supplementary Fig. 6 were acquired using another home-built microscope. The
output from three lasers operating at 488 nm (Toptica, iBeam smart, 200 mW,
Munich, Germany), 561 nm (Cobalt Jive, 200 mW, Cobalt, Sweden) and 640 nm
(Coherent Cube, 100 mW, Coherent, USA) were attenuated using neutral density
filters, and passed through quarter-wave plates, beam expanders and their
respective excitation filters (LL01-488-25 for 488 nm FF01-561/14-25 for 561 nm
and FF01-640/14-25 for 640 nm; Semrock). The lasers were combined using two
dichroic mirrors (FF552-Di02-25×36, FF458-Di02-25×36, Semrock), and passed
through the back port of a Nikon Ti-E Eclipse microscope (Nikon, Japan), where
they were reflected down the optical axis of a 1.49 NA, 60× TIRF objective
(UPLSAPO, 60XO TIRF, Olympus) in epifluorescence mode. Then, 641, 561 and
488 nm excitation was performed sequentially, and emitted fluorescence was
collected by the same objective and separated from excitation light by a dichroic
mirror (Di01-R405/488/561/635-25×36, Semrock). The red, yellow and green
fluorescence emissions were filtered by further bandpass and/or longpass filters
(BLP01-635R-25 (red emission), LP02-568RS-25 and FF01-587/35-25 (yellow
emission), BLP01-488R-25 (green emission); Semrock) before being passed
through a 2.5× beam expander and recorded on an EMCCD camera
(Delta Evolve 512, Photometrics, AZ, USA) operating in frame transfer mode
(EMGain of 11.5 e−1 per ADU and 250 ADU per photon). Each pixel corresponded
to a length of 131.5 nm. Data (100 images per sample) were acquired in grids of 10
by 10 successive images (separated by 100 µm), using a motorized stage (Proscan
III system, Prior Scientific, Cambridge, UK), controlled with Micromanager43.
Two-color images were first acquired under 640 nm illumination (with an exposure
time of 10 ms), then under 488 nm illumination (with an exposure time of 40 ms),
while three-color images were first acquired under 640 nm illumination (with an
exposure time of 10 ms), then under 561 nm illumination (with an exposure time
of 20 ms), and then under 488 nm illumination (with an exposure time of 10 ms).
The microscope was fitted with a perfect focus system which auto-corrects the z-
stage drift during a prolonged period of imaging. Out-of-focus images were
discarded during acquisition, i.e., before analysis.

Image analysis. Bacteria detection (identifying regions of interest for analysis):
Fluorescence images were analyzed using custom software written in MATLAB
(MATLAB R2010b, The MathWorks, Inc., Supplementary Software). For each field
of view, two or three images are acquired sequentially for each color channel,
exciting the red (‘red image’) and then green (‘green image’) fluorophore, and, in
the case of three-color imaging, the Cy3 fluorophore (‘yellow image’). The process
therefore begins with a step to ensure good registration across the image pairs or
triplets. To achieve this, a sub-region is defined in the red image and the nor-
malized two-dimensional cross-correlation coefficients are calculated between this
sub-region and the yellow or the green image, from which the xy position of
maximal cross-correlation can be obtained for each image. The difference between
the positions found gives the offset between the green or yellow channel from the
red. In some instances, calculation of the cross-correlation does not return realistic
values, in particular if the intensities are low or there are few image features. In this
case, the offset is set to the median offset found for images of the given data set.
The image of one channel is then shifted with respect to the other channel by this
offset value, correcting for translational shift.

Prior to the detection of stained bacteria, which appear as local regions of high
intensity above baseline levels in fixed positions within the field of view
(Supplementary Fig. 4), the red image is converted to a binary image (mask) using
a threshold intensity set to be the mean single pixel intensity of the bandpass-
filtered red image plus 20 times this value. Pixels with intensity values below the
threshold are set to zero and considered to be background, while pixels with values
above the threshold are set to one and potential candidates for bacteria signals. This
threshold was determined empirically and by visual inspection of the resulting
mask and comparison with the original data. Only the signal from the red channel
is used for bacteria detection to minimize any selection bias due to the expected
large variation in fluorescence brightness in the green and yellow channels. For
example, bacteria with highly methylated ribosomes might not give rise to
sufficient intensity in the green channel to be detected, biasing detection toward
bacteria with low ribosomal methylation state.

Selection of the signals from single, isolated bacteria: In the next step, objects
(bacteria) are detected by tracing continuous regions of ones in the binary image
(mask). It is necessary to include further selection criteria in the algorithm for
robust discrimination against aggregates of bacteria which may consist of bacteria
belonging to different strains. To this end, for each region, the position, size and
continuity (number of pixels corresponding to “holes” with value zero in the
region) is determined. Signals are assumed to correspond to single bacteria if the
area of the region is 1–10 µm2 and contains < 50 background pixels (value zero).
Selection criteria based on region ellipticity were also explored but not found to
improve discrimination. For regions that fulfill these requirements (single bacteria),
the mean intensity for the region is calculated from the green, yellow and red original
images and corrected for the local background by subtracting the average intensity of

Table 3 HPLC conditions for analysis of digested ribosomal
RNA

Column: Waters XSelect HSS T3, 100 Å, 3.5 µm, 3.0 × 150mm

Column temperature: 30 °C

Flow rate: 0.7 mLmin−1

Injection volume: 8 μL

Step time
/ min

Mobile phase composition / %

A
(water)

B
(acetonitrile)

C(0.2M NH4OAc, pH 6,
2.5% acetonitrile)

0 90 0 10
3.6 90 0 10
6.0 88 2 10
7.5 85 5 10
13.5 70 20 10
24 55 35 10
27.5 10 80 10
28.8 10 80 10
29.0 90 0 10
38.0 90 0 10
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a shell around the detected region (+/− 3px). The entire procedure is fully automated
and does not require the user to select control areas or individual bacteria.

Analysis and presentation of the extracted data: Finally, the ratio of red/green
intensity (or yellow/green in the case of three-color experiments) was calculated for
each bacterium. Since the distribution of the two-color ratio for a single population
is expected to be log-normal, the histograms were plotted logarithmically and fitted
to a single-term Gaussian function, thus obtaining the center of each ratio
distribution. All plots and further fits were created in OriginPro.

Code availability. MATLAB code for analyzing MR-FISH image data is available
at https://github.com/kganzinger/Analysis-Software-for-in-situ-hybridization-
data-in-single-cells. The code requires MATLAB R2010b (or later releases) and the
following tool boxes to run: Image Processing, Curve Fitting and Statistics.

Statistics. Sufficient imaging data were collected to yield >450 cells per sample for
analysis after thresholding, with three to seven replicate samples per experiment
(with n quoted in the appropriate figure legends). Descriptive statistics are used
throughout.

Data availability. All imaging data used to produce the main text figures and
supplementary figures, as well as Excel source data for main text Figs. 1–4 are
deposited on figshare44. HPLC and thermal melting data are available on rea-
sonable request.
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