40 research outputs found
Search for gravitational waves from binary inspirals in S3 and S4 LIGO data
We report on a search for gravitational waves from the coalescence of compact
binaries during the third and fourth LIGO science runs. The search focused on
gravitational waves generated during the inspiral phase of the binary
evolution. In our analysis, we considered three categories of compact binary
systems, ordered by mass: (i) primordial black hole binaries with masses in the
range 0.35 M(sun) < m1, m2 < 1.0 M(sun), (ii) binary neutron stars with masses
in the range 1.0 M(sun) < m1, m2 < 3.0 M(sun), and (iii) binary black holes
with masses in the range 3.0 M(sun)< m1, m2 < m_(max) with the additional
constraint m1+ m2 < m_(max), where m_(max) was set to 40.0 M(sun) and 80.0
M(sun) in the third and fourth science runs, respectively. Although the
detectors could probe to distances as far as tens of Mpc, no gravitational-wave
signals were identified in the 1364 hours of data we analyzed. Assuming a
binary population with a Gaussian distribution around 0.75-0.75 M(sun), 1.4-1.4
M(sun), and 5.0-5.0 M(sun), we derived 90%-confidence upper limit rates of 4.9
yr^(-1) L10^(-1) for primordial black hole binaries, 1.2 yr^(-1) L10^(-1) for
binary neutron stars, and 0.5 yr^(-1) L10^(-1) for stellar mass binary black
holes, where L10 is 10^(10) times the blue light luminosity of the Sun.Comment: 12 pages, 11 figure
Search for gravitational-wave bursts in LIGO data from the fourth science run
The fourth science run of the LIGO and GEO 600 gravitational-wave detectors,
carried out in early 2005, collected data with significantly lower noise than
previous science runs. We report on a search for short-duration
gravitational-wave bursts with arbitrary waveform in the 64-1600 Hz frequency
range appearing in all three LIGO interferometers. Signal consistency tests,
data quality cuts, and auxiliary-channel vetoes are applied to reduce the rate
of spurious triggers. No gravitational-wave signals are detected in 15.5 days
of live observation time; we set a frequentist upper limit of 0.15 per day (at
90% confidence level) on the rate of bursts with large enough amplitudes to be
detected reliably. The amplitude sensitivity of the search, characterized using
Monte Carlo simulations, is several times better than that of previous
searches. We also provide rough estimates of the distances at which
representative supernova and binary black hole merger signals could be detected
with 50% efficiency by this analysis.Comment: Corrected amplitude sensitivities (7% change on average); 30 pages,
submitted to Classical and Quantum Gravit
Searching for a Stochastic Background of Gravitational Waves with LIGO
The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed
the fourth science run, S4, with significantly improved interferometer
sensitivities with respect to previous runs. Using data acquired during this
science run, we place a limit on the amplitude of a stochastic background of
gravitational waves. For a frequency independent spectrum, the new limit is
. This is currently the most sensitive
result in the frequency range 51-150 Hz, with a factor of 13 improvement over
the previous LIGO result. We discuss complementarity of the new result with
other constraints on a stochastic background of gravitational waves, and we
investigate implications of the new result for different models of this
background.Comment: 37 pages, 16 figure
A morphometric method for correcting phytoplankton cell volume estimates
Cell volume calculations are often used to estimate biomass of natural phytoplankton assemblages. Such estimates may be questioned due to morphological differences in the organisms present. Morphometric analysis of 8 species representative of phytoplankton types found in the Great Lakes shows significant differences in cell constituent volumes. Volume of physiologically inert wall material ranges from nil, in some flagellates, to over 20% of the total cell volume in certain diatoms. Likewise, “empty” vacuole may comprise more than 40% of the total cell volume of some diatoms, but less than 3% of the volume of some flagellates. In the organisms investigated, the total carbon containing cytoplasm ranged from 52% to 98% of the total cell volume and the metabolizing biovolume ranged from 30% to 82%. Although these differences complicate direct biomass estimation, morphometric analysis at the ultrastructural level may provide ecologically valuable insights.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41732/1/709_2005_Article_BF01275650.pd
Search for gravitational wave radiation associated with the pulsating tail of the SGR 1806-20 hyperflare of 27 December 2004 using LIGO
We have searched for Gravitational Waves (GWs) associated with the SGR
1806-20 hyperflare of 27 December 2004. This event, originating from a Galactic
neutron star, displayed exceptional energetics. Recent investigations of the
X-ray light curve's pulsating tail revealed the presence of Quasi-Periodic
Oscillations (QPOs) in the 30 - 2000 Hz frequency range, most of which
coincides with the bandwidth of the LIGO detectors. These QPOs, with
well-characterized frequencies, can plausibly be attributed to seismic modes of
the neutron star which could emit GWs. Our search targeted potential
quasi-monochromatic GWs lasting for tens of seconds and emitted at the QPO
frequencies. We have observed no candidate signals above a pre-determined
threshold and our lowest upper limit was set by the 92.5 Hz QPO observed in the
interval from 150 s to 260 s after the start of the flare. This bound
corresponds to a (90% confidence) root-sum-squared amplitude h_rssdet^90% =
4.5e-22 strain Hz^-1/2 on the GW waveform strength in the detectable
polarization state reaching our Hanford (WA) 4 km detector. We illustrate the
astrophysical significance of the result via an estimated characteristic energy
in GW emission that we would expect to be able to detect. The above result
corresponds to 7.7e46 erg (= 4.3e-8 M_sun c^2), which is of the same order as
the total (isotropic) energy emitted in the electromagnetic spectrum. This
result provides a means to probe the energy reservoir of the source with the
best upper limit on the GW waveform strength published and represents the first
broadband asteroseismology measurement using a GW detector.Comment: 13 pages, 2 tables, 3 figures, submitted to Phys. Rev.
Upper limit map of a background of gravitational waves
We searched for an anisotropic background of gravitational waves using data
from the LIGO S4 science run and a method that is optimized for point sources.
This is appropriate if, for example, the gravitational wave background is
dominated by a small number of distinct astrophysical sources. No signal was
seen. Upper limit maps were produced assuming two different power laws for the
source strain power spectrum. For an f^-3 power law and using the 50 Hz to 1.8
kHz band the upper limits on the source strain power spectrum vary between
1.2e-48 Hz^-1 (100 Hz/f)^3 and 1.2e-47 Hz^-1 (100 Hz /f)^3, depending on the
position in the sky. Similarly, in the case of constant strain power spectrum,
the upper limits vary between 8.5e-49 Hz^-1 and 6.1e-48 Hz^-1.
As a side product a limit on an isotropic background of gravitational waves
was also obtained. All limits are at the 90% confidence level. Finally, as an
application, we focused on the direction of Sco-X1, the closest low-mass X-ray
binary. We compare the upper limit on strain amplitude obtained by this method
to expectations based on the X-ray luminosity of Sco-X1.Comment: 11 pages, 9 figures, 2 table
Upper limit map of a background of gravitational waves
We searched for an anisotropic background of gravitational waves using data
from the LIGO S4 science run and a method that is optimized for point sources.
This is appropriate if, for example, the gravitational wave background is
dominated by a small number of distinct astrophysical sources. No signal was
seen. Upper limit maps were produced assuming two different power laws for the
source strain power spectrum. For an f^-3 power law and using the 50 Hz to 1.8
kHz band the upper limits on the source strain power spectrum vary between
1.2e-48 Hz^-1 (100 Hz/f)^3 and 1.2e-47 Hz^-1 (100 Hz /f)^3, depending on the
position in the sky. Similarly, in the case of constant strain power spectrum,
the upper limits vary between 8.5e-49 Hz^-1 and 6.1e-48 Hz^-1.
As a side product a limit on an isotropic background of gravitational waves
was also obtained. All limits are at the 90% confidence level. Finally, as an
application, we focused on the direction of Sco-X1, the closest low-mass X-ray
binary. We compare the upper limit on strain amplitude obtained by this method
to expectations based on the X-ray luminosity of Sco-X1.Comment: 11 pages, 9 figures, 2 table
Searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1 : results from the second LIGO science run
We carry out two searches for periodic gravitational waves using the most sensitive few hours of data from the second LIGO science run. Both searches exploit fully coherent matched filtering and cover wide areas of parameter space, an innovation over previous analyses which requires considerable algorithm development and computational power. The first search is targeted at isolated, previously unknown neutron stars, covers the entire sky in the frequency band 160-728.8 Hz, and assumes a frequency derivative of less than 4×10-10 Hz/s. The second search targets the accreting neutron star in the low-mass x-ray binary Scorpius X-1 and covers the frequency bands 464-484 Hz and 604-624 Hz as well as the two relevant binary orbit parameters. Because of the high computational cost of these searches we limit the analyses to the most sensitive 10 hours and 6 hours of data, respectively. Given the limited sensitivity and duration of the analyzed data set, we do not attempt deep follow-up studies. Rather we concentrate on demonstrating the data analysis method on a real data set and present our results as upper limits over large volumes of the parameter space. In order to achieve this, we look for coincidences in parameter space between the Livingston and Hanford 4-km interferometers. For isolated neutron stars our 95% confidence level upper limits on the gravitational wave strain amplitude range from 6.6×10-23 to 1×10-21 across the frequency band; for Scorpius X-1 they range from 1.7×10-22 to 1.3×10-21 across the two 20-Hz frequency bands. The upper limits presented in this paper are the first broadband wide parameter space upper limits on periodic gravitational waves from coherent search techniques. The methods developed here lay the foundations for upcoming hierarchical searches of more sensitive data which may detect astrophysical signals