18 research outputs found

    Spatial variability of soil properties under different land use in the Dang district of Nepal

    Get PDF
    Increased nutrient mining, soil erosion, and limited nutrient management has led to declines in soil quality and reduced productivity in many parts of Nepal. A study was conducted in the eastern part of the Dang district of Nepal in 2015 to assess the variability of selected soil properties of three different land use types (agricultural, agroforestry, and grassland) and to map their spatial distribution. A total of 120 soil samples were collected from 0–15 cm depth and analyzed for soil fertility parameters: pH, organic matter (OM), nitrogen (N), phosphorus (P), potassium (K), boron (B), and zinc (Zn). Results revealed that the average value of the soil pH significantly (P \u3c 0.05) varied from agroforestry to agricultural land use. Soil OM and N contents were in the medium range in all land use with minor variation, with the highest average OM and N found in grassland (2.87% and 0.14%), followed by agricultural land (2.64% and 0.13%), and agroforestry (2.45% and 0.12%). Soil P showed a significant variation between agroforest (18.99 kg ha−1) and grassland (8.49 kg ha−1). Soil K content was high in grassland (144.44 mg kg−1) and low in agricultural land (120.95 mg kg−1) but was not statistically significant. Micronutrient B was low (0.28–0.35 mg kg−1) and Zn was very low (0.14 mg kg−1). The interpolated soil maps thus generated may assist farmers in identifying the expected nutrient levels for their localities and encourage them to modify their management practices to improve productivity and lift income

    Spatial variability of soil properties under different land use in the Dang district of Nepal

    Get PDF
    Increased nutrient mining, soil erosion, and limited nutrient management has led to declines in soil quality and reduced productivity in many parts of Nepal. A study was conducted in the eastern part of the Dang district of Nepal in 2015 to assess the variability of selected soil properties of three different land use types (agricultural, agroforestry, and grassland) and to map their spatial distribution. A total of 120 soil samples were collected from 0–15 cm depth and analyzed for soil fertility parameters: pH, organic matter (OM), nitrogen (N), phosphorus (P), potassium (K), boron (B), and zinc (Zn). Results revealed that the average value of the soil pH significantly (P \u3c 0.05) varied from agroforestry to agricultural land use. Soil OM and N contents were in the medium range in all land use with minor variation, with the highest average OM and N found in grassland (2.87% and 0.14%), followed by agricultural land (2.64% and 0.13%), and agroforestry (2.45% and 0.12%). Soil P showed a significant variation between agroforest (18.99 kg ha−1) and grassland (8.49 kg ha−1). Soil K content was high in grassland (144.44 mg kg−1) and low in agricultural land (120.95 mg kg−1) but was not statistically significant. Micronutrient B was low (0.28–0.35 mg kg−1) and Zn was very low (0.14 mg kg−1). The interpolated soil maps thus generated may assist farmers in identifying the expected nutrient levels for their localities and encourage them to modify their management practices to improve productivity and lift income

    Digital soil mapping in the Bara district of Nepal using kriging tool in ArcGIS

    Get PDF
    Digital soil mapping has been widely used to develop statistical models of the relationships between environmental variables and soil attributes. This study aimed at determining and mapping the spatial distribution of the variability in soil chemical properties of the agricultural floodplain lands of the Bara district in Nepal. The study was carried out in 23 Village Development Committees with 12,516 ha total area, in the southern part of the Bara district. A total of 109 surface soil samples (0 to 15 cm depth) were collected and analyzed for pH, organic matter (OM), nitrogen (N), phosphorus (P, expressed as P2O5), potassium (K, expressed as K2O), zinc (Zn), and boron (B) status. Descriptive statistics showed that most of the measured soil chemical variables (other than pH and P2O5) were skewed and nonnormally distributed and logarithmic transformation was then applied. A geostatistical tool, kriging, was used in ArcGIS to interpolate measured values for those variables and several digital map layers were developed based on each soil chemical property. Geostatistical interpolation identified a moderate spatial variability for pH, OM, N, P2O5, and a weak spatial variability for K2O, Zn, and B, depending upon the use of amendments, fertilizing methods, and tillage, along with the inherent characteristics of each variable. Exponential (pH, OM, N, and Zn), Spherical (K2O and B), and Gaussian (P2O5) models were fitted to the semivariograms of the soil variables. These maps allow farmers to assess existing farm soils, thus allowing them to make easier and more efficient management decisions and maintain the sustainability of productivity

    Assessing the Impacts of Tillage and Mulch on Soil Erosion and Corn Yield

    Get PDF
    Conventional tillage practices have been regarded as the major reason for the loss of fertile topsoil in the sloping agricultural lands of the middle hills of Nepal. Reports on the effects of no-till and mulch on soil and corn yield in these regions are scarce, although these farming practices have been recommended to reduce soil erosion and increase crop yields. To assess the impacts of tillage (with +T, without −T) and mulch (with +M, without −M) on soil and soil nutrient losses, and corn yield, we conducted an experiment with five treatments: −T+M, −T−M, +T+M, +T−M, and bare fallow (BF), replicated four times each in an unbalanced complete random block design in Salyan district of Nepal. The results showed the presence of corn and no-till significantly lowered the soil losses. Losses of soil organic matter (SOM) and total nitrogen were also significantly reduced by the presence of corn, no-till, and mulch. However, no effects of mulch on soil losses, and no effects of tillage, mulch and corn on soil phosphorus losses were observed. Soil loss was found to be significantly and positively correlated with total seasonal rainfall, monsoon being the most severe season for soil erosion. While no-till and mulch did not affect corn height, cob height, and stover yield, no-till significantly increased the corn yield by 0.52 Mg ha⁻¹ compared to conventional till. We confirm the synergistic interaction of mulch with tillage to reduce the losses of SOM and total nitrogen, and effectiveness of no-till to reduce the soil losses and increase the corn yield in the middle hills of Nepal. As this study is based on the results of two year’s data, long-term studies are required to identify the long-term impacts of no-till and mulch on soil losses and corn yield across the country

    Wheat Yield Trend and Soil Fertility Status in Long Term Rice-Rice-Wheat Cropping System

    Full text link
    A long-term soil fertility experiment under rice-rice-wheat system was performed to evaluate the long term effects of inorganic fertilizer and manure applications on soil properties and grain yield of wheat. The experiment began since 1978 was laid out in randomized complete block design with 9 treatments replicated 3 times. From 1990 onwards, periodic modifications have been made in all the treatments splitting the plots in two equal halves of 4 x 3 m2 leaving one half as original. In the original treatments, recent data revealed that the use of Farm Yard Manure (FYM) @10 t ha-1 gave significantly (P≤0.05) higher yield of 2.3 t ha-1 in wheat, whereas control plot gave the lowest grain yield of 277 kg ha-1. Similarly, in the modified treatments, the use of FYM @10 t ha-1 along with inorganic Nitrogen (N) and Potassium oxide (K2O) @ 50 kg ha-1 produced significantly (P≤0.05) the highest yield of 2.4 t/ha in wheat. The control plot with an indigenous nutrient supply only produced wheat yield of 277 kg ha-1 after 35th year completion of rice-rice-wheat system. A sharp decline in wheat yields was noted in minus N, phosphorus (P), Potassium (K) treatments during recent years. Yields were consistently higher in the N:P2O5:K2O and FYM treatments than in treatments, where one or more nutrients were lacking. The application of P2O5 and K2O caused a partial recovery of yield in P and K deficient plots. There was significant (P≤0.05) effect of use of chemical fertilizers and manure on soil properties. The soil analysis data showed an improvement in soil pH (7.8), soil organic matter (4.1%), total N content (0.16%), available P (503.5 kg P2O5 ha-1) and exchangeable K (137.5 kg K2O ha-1) in FYM applied treatments over all other treatments. The findings showed that the productivity of the wheat can be increased and sustained by improving nutrient through the integrated use of organic and inorganic manures in long term.Journal of Nepal Agricultural Research Council Vol.1 2015 pp.21-2

    Land use change affects water erosion in the Nepal Himalayas.

    Get PDF
    Soil erosion is a global environmental threat, and Land Use Land Cover Changes (LUCC) have significant impacts on it. Nepal, being a mountainous country, has significant soil erosion issues. To examine the effects of LUCC on water erosion, we studied the LUCC in Sarada, Rapti and Thuli Bheri river basins of Nepal during the 1995-2015 period using the Remote Sensing. We calculated the average annual soil loss using the Revised Universal Soil Loss Equation and Geographical Information System. Our results suggest that an increase in the agricultural lands at the expense of bare lands and forests escalated the soil erosion through the years; rates being 5.35, 5.47 and 6.03 t/ha/year in 1995, 2007 and 2015, respectively. Of the different land uses, agricultural land experienced the most erosion, whereas the forests experienced the least erosion. Agricultural lands, particularly those on the steeper slopes, were severely degraded and needed urgent soil and water conservation measures. Our study confirms that the long term LUCC has considerable impacts on soil loss, and these results can be implemented in similar river basins in other parts of the country

    Land Degradation by Soil Erosion in Nepal: A Review

    Get PDF
    Land degradation, particularly soil erosion, is currently a major challenge for Nepal. With a high rate of population growth, subsistence-based rural economy, and increasingly intense rainfall events in the monsoon season, Nepal is prone to several forms of land degradation, such as floods, landslides, and soil erosion. To understand the causes, impacts, and possible management options for soil erosion, a review on the causal factors, status, and amelioration measures for land degradation in Nepal was conducted based on recent information available in national and international journals and grey literature. Intense rainfall and conventional tillage practices coupled with poor soil structure and steep slopes are the main drivers of soil erosion. Soil erosion leads to losses in soil and crop productivity, pollution of land and water resources, and a loss of farm income. Strategies to manage erosion include mulching, cover cropping, contour farming, strip cropping, and conservation agriculture practices, along with bioengineering techniques. Land degradation issues are a prime policy focus in Nepal, including national three- and five-year plans. However, these policies have been generally ineffective in reducing soil erosion, landslides, and floods in relation to the set targets. Realistic plans need to be formulated in Nepal focusing more on capacity enhancement and local participation to actively influence land-degradation processes

    Spatial variability of soil properties under different land use in the Dang district of Nepal

    Get PDF
    Increased nutrient mining, soil erosion, and limited nutrient management has led to declines in soil quality and reduced productivity in many parts of Nepal. A study was conducted in the eastern part of the Dang district of Nepal in 2015 to assess the variability of selected soil properties of three different land use types (agricultural, agroforestry, and grassland) and to map their spatial distribution. A total of 120 soil samples were collected from 0–15 cm depth and analyzed for soil fertility parameters: pH, organic matter (OM), nitrogen (N), phosphorus (P), potassium (K), boron (B), and zinc (Zn). Results revealed that the average value of the soil pH significantly (P \u3c 0.05) varied from agroforestry to agricultural land use. Soil OM and N contents were in the medium range in all land use with minor variation, with the highest average OM and N found in grassland (2.87% and 0.14%), followed by agricultural land (2.64% and 0.13%), and agroforestry (2.45% and 0.12%). Soil P showed a significant variation between agroforest (18.99 kg ha−1) and grassland (8.49 kg ha−1). Soil K content was high in grassland (144.44 mg kg−1) and low in agricultural land (120.95 mg kg−1) but was not statistically significant. Micronutrient B was low (0.28–0.35 mg kg−1) and Zn was very low (0.14 mg kg−1). The interpolated soil maps thus generated may assist farmers in identifying the expected nutrient levels for their localities and encourage them to modify their management practices to improve productivity and lift income

    Estimation of Sediment Yield and Maximum Outflow Using the IntErO Model in the Sarada River Basin of Nepal

    No full text
    Soil erosion is a severe environmental problem worldwide as it washes away the fertile topsoil and reduces agricultural production. Nepal, being a hilly country, has significant erosion disputes as well. It is important to cognise the soil erosion processes occurring in a river basin to manage the erosion severity and plan for better soil conservation programs. This paper seeks to calculate the sediment yield and maximum outflow from the Sarada river basin located in the western hills of Nepal using the computer-graphic Intensity of Erosion and Outflow (IntErO) model. Asymmetry coefficient of 0.63 was calculated, which suggests a possibility of large floods to come in the river basin in the future whereas the maximum outflow from the river basin was 1918 m³ s−1. An erosion coefficient value of 0.40 was obtained, which indicates surface erosion of medium strength prevails in the river basin. Similarly, the gross soil loss rate of 10.74 Mg ha−1 year−1 was obtained with the IntErO modeling which compares well with the soil loss from the erosion plot measurements. The IntErO model was used for the very first time to calculate soil erosion rates in the Nepalese hills and has a very good opportunity to be applied in similar river basins

    Estimation of Sediment Yield and Maximum Outflow Using the IntErO Model in the Sarada River Basin of Nepal

    No full text
    Soil erosion is a severe environmental problem worldwide as it washes away the fertile topsoil and reduces agricultural production. Nepal, being a hilly country, has significant erosion disputes as well. It is important to cognise the soil erosion processes occurring in a river basin to manage the erosion severity and plan for better soil conservation programs. This paper seeks to calculate the sediment yield and maximum outflow from the Sarada river basin located in the western hills of Nepal using the computer-graphic Intensity of Erosion and Outflow (IntErO) model. Asymmetry coefficient of 0.63 was calculated, which suggests a possibility of large floods to come in the river basin in the future whereas the maximum outflow from the river basin was 1918 m³ s−1. An erosion coefficient value of 0.40 was obtained, which indicates surface erosion of medium strength prevails in the river basin. Similarly, the gross soil loss rate of 10.74 Mg ha−1 year−1 was obtained with the IntErO modeling which compares well with the soil loss from the erosion plot measurements. The IntErO model was used for the very first time to calculate soil erosion rates in the Nepalese hills and has a very good opportunity to be applied in similar river basins
    corecore