928 research outputs found

    BIOFUELS, AGRICULTURE AND CLIMATE CHANGE

    Get PDF
    In the context of ever-increasing petroleum prices combined with concerns about climate change, timing of adoption and rate of diffusion of land-based fuels and backstop technologies for transportation use are examined in this paper. A global model of land allocation joined with a Hotelling model has been developed. Using this framework, effects of climate and energy policies on world agricultural and energy markets have been explored. Further, their regional impacts are also analyzed. Whereas mandatory blending bio-fuels have substantial effects on world food prices and do not succeed in curbing down carbon emissions fluxes, carbon targets are expected to speed up date of adoption of backstop technologies. Then, sensitivity scenarios with regards to technological parameters reveal that higher is the rate of technological change, earlier backstop technologies are adopted and lower is the stock of carbon accumulated into the atmosphere. Finally, interplay between land-based fuels and deforestation has been studied. Results show that land-based fuels production speeds up world deforestation and causes substantial carbon emissions due to conversion of forests into agricultural lands.Ricardian rents, land use, biofuels, Resource /Energy Economics and Policy,

    Absorption lines from magnetically-driven winds in X-ray binaries

    Full text link
    High resolution X-ray spectra of black hole X-ray binaries (BHBs) show blueshifted absorption lines from disk winds which seem to be equatorial. Winds occur in the Softer (disk-dominated) states of the outburst and are less prominent or absent in the Harder (power-law dominated) states. We use self-similar magneto-hydrodynamic (MHD) accretion-ejection models to explain the disk winds in BHBs. In our models, the density at the base of the outflow from the accretion disk is not a free parameter, but is determined by solving the full set of dynamical MHD equations. Thus the physical properties of the outflow are controlled by the global structure of the disk. We studied different MHD solutions characterized by different values of (a) the disk aspect ratio (ε\varepsilon) and (b) the ejection efficiency (pp). We use two kinds of MHD solutions depending on the absence (cold solution) or presence (warm solution) of heating at the disk surface. Such heating could be from e.g. dissipation of energy due to MHD turbulence in the disk or from illumination. We use each of these MHD solutions to predict the physical parameters of an outflow; put limits on the ionization parameter (ξ\xi), column density and timescales, motivated by observational results; and thus select regions within the outflow which are consistent with the observed winds. The cold MHD solutions cannot account for winds due to their low ejection efficiency. But warm solutions can explain the observed physical quantities in the wind because they can have sufficiently high values of pp (0.1\gtrsim 0.1, implying larger mass loading at the base of the outflow). Further from our thermodynamic equilibrium curve analysis for the outflowing gas, we found that in the Hard state a range of ξ\xi is thermodynamically unstable, and had to be excluded. This constrain made it impossible to have any wind at all, in the Hard state.Comment: 16 Pages, 10 figures in the main body and 4 figures in the appendix. Accepted for publication in A&

    AC conductivity analysis for a metal core-silver orthosilicate shell nanostructure

    Get PDF
    Nanocomposites containing silver particles of diameter of 20 nm with silver orthosilicate crystals forming the shell with thickness around 21 nm closely packed in a silicate glass were prepared. The ac conductivity of samples subjected to different heat treatments were measured over the frequency range of 100 Hz to 6 MHz in the temperature range of 500-570 K. The data were analyzed by the Macdonald model based on Kohlrausch-related frequency response formalism designated as CK0. The reference system was taken as the glass-crystal composite containing a lithium orthosilicate crystalline phase. The shape parameter βo for the reference system was found to be 0.33, whereas that for the nanocomposites was extracted to be 0.46. The former implied a one-dimensional lithium ion motion along the grain boundaries of the orthosilicate crystals, whereas the latter indicated that there was a one-dimensional silver ion motion in an effective two-dimensional structure in the shell surface because of a high stress condition along the radial direction of the core-shell composite

    Cluster effects on optical properties of glass-metap nanocomposited

    Get PDF
    Optical absorption characteristics in a glass-metal nanocomposite system involving bismuth metal have been analysed using effective medium theories with a model incorporating single strand chains and fcc clusters of metallic bismuth particles. The computed values show fair agreement with experimental data

    A solvable model of the genesis of amino-acid sequences via coupled dynamics of folding and slow genetic variation

    Full text link
    We study the coupled dynamics of primary and secondary structure formation (i.e. slow genetic sequence selection and fast folding) in the context of a solvable microscopic model that includes both short-range steric forces and and long-range polarity-driven forces. Our solution is based on the diagonalization of replicated transfer matrices, and leads in the thermodynamic limit to explicit predictions regarding phase transitions and phase diagrams at genetic equilibrium. The predicted phenomenology allows for natural physical interpretations, and finds satisfactory support in numerical simulations.Comment: 51 pages, 13 figures, submitted to J. Phys.

    Multi-tasking Sulf1/Sulf2 enzymes do not only facilitate extracellular cell signalling but also participate in cell cycle related nuclear events

    Get PDF
    This study demonstrates highly dynamic spatial and temporal pattern of SULF1/SULF2 expression in a number of neuronal cell types growing in normal culture medium that included their transient nuclear mobilisation. Their nuclear translocation became particularly apparent during cell proliferation as both SULF1/SULF2 demonstrated not only cell membrane associated expression, their known site of function but also transient nuclear mobilisation during nuclear cell division. Nuclear localisation was apparent not only by immunocytochemical staining but also confirmed by immunoblotting staining of isolated nuclear fractions of C6, U87 and N2A cells. Immunocytochemical analysis demonstrated rapid nuclear exit of both SULF1/SULF2 following cell division that was slightly delayed but not blocked in a fraction of the polyploid cells observed in C6 cells. The overexpression of both Sulf1 and Sulf2 genes in C6 and U87 cells markedly promoted in vitro growth of these cells accompanied by nuclear mobilisation while inhibition of both these genes inhibited cell proliferation with little or no nuclear SULF1/SULF2 mobilisation. SULF1/SULF2 activity in these cells thus demonstrated a clear co-ordination of extracellular cell signalling with nuclear events related to cell proliferation

    The outflow in Mrk 509: A method to calibrate XMM-Newton EPIC-pn and RGS

    Full text link
    We have analyzed three XMM-Newton observations of the Seyfert 1 galaxy Mrk 509, with the goal to detect small variations in the ionized outflow properties. Such measurements are limited by the quality of the cross-calibration between RGS, the best instrument to characterize the spectrum, and EPIC-pn, the best instrument to characterize the variability. For all three observations we are able to improve the relative calibration of RGS and pn consistently to 4 %. In all observations we detect three different outflow components and, thanks to our accurate cross-calibration we are able to detect small differences in the ionization parameter and column density in the highest ionized component of the outflow. This constrains the location of this component of the outflow to within 0.5 pc of the central source. Our method for modeling the relative effective area is not restricted to just this source and can in principle be extended to other types of sources as well.Comment: 11 pages, 9 figure

    A Theory of Sampling for Continuous-time Metric Temporal Logic

    Full text link
    This paper revisits the classical notion of sampling in the setting of real-time temporal logics for the modeling and analysis of systems. The relationship between the satisfiability of Metric Temporal Logic (MTL) formulas over continuous-time models and over discrete-time models is studied. It is shown to what extent discrete-time sequences obtained by sampling continuous-time signals capture the semantics of MTL formulas over the two time domains. The main results apply to "flat" formulas that do not nest temporal operators and can be applied to the problem of reducing the verification problem for MTL over continuous-time models to the same problem over discrete-time, resulting in an automated partial practically-efficient discretization technique.Comment: Revised version, 43 pages

    A unified accretion-ejection paradigm for black hole X-ray binaries. III. Spectral signatures of hybrid disk configurations

    Full text link
    It has been suggested that the cycles of activity of X-ray Binaries (XrB) are triggered by a switch in the dominant disk torque responsible for accretion (paper I). As the disk accretion rate increases, the disk innermost regions would change from a jet-emitting disk (JED) to a standard accretion disk (SAD). While JEDs have been proven to successfully reproduce hard states (paper II), the existence of an outer cold SAD introduces an extra non local cooling term. We investigate the thermal structure and associated spectra of such a hybrid disk configuration. We use the 2T plasma code elaborated in paper II, allowing to compute outside-in the disk local thermal equilibrium with self-consistent advection and optically thin-to-thick transitions, in both radiation and gas supported regimes. The non-local inverse Compton cooling introduced by the external soft photons is computed by the BELM code. This additional term has a profound influence on JED solutions, allowing a smooth temperature transition from the outer SAD to the inner JED. We explore the full parameter space in disk accretion rate and transition radius, and show that the whole domain in X-ray fluxes and hardness ratios covered by standard XrB cycles is well reproduced by such hybrid configurations. Precisely, a reasonable combination of these parameters allows to reproduce the 3-200 keV spectra of five canonical XrB states. Along with X-ray signatures, JED-SAD configurations also naturally account for the radio emission whenever it is observed. By varying only the transition radius and the accretion rate, hybrid disk configurations combining an inner JED and an outer SAD are able to reproduce simultaneously the X-ray spectral states and radio emission of X-ray binaries during their outburst. Adjusting these two parameters, it is then possible to reproduce a full cycle. This will be shown in a forthcoming paper (paper IV).Comment: Accepted for publication in A&
    corecore