7 research outputs found

    Detailed investigation of defect states in Erbium doped In2O3 thin films

    Get PDF
    Erbium doped Indium Oxide (In2O3:Er) thin films (TFs) were synthesised by spin-on technique. Secondary Ion Mass Spectrometry confirmed that Er is incorporated into the In2O3 lattice and formed an In-O-Er layer. The current–voltage loop produced a lower loop current window of ∼3.6 × 10−4 A for In2O3:Er TF based devices. The Au/In2O3:Er/Si Schottky devices have lower ideality factor (∼6) and higher barrier height (∼0.63 eV) at 300 K than Au/In2O3/Si control samples. A blue shift in the main band-gap (∼50 nm) was calculated for In2O3:Er TFs from 10 K photoresponse. The Au/In2O3:Er/Si samples show higher photosensitivity in the temperature range 10 K–300 K and maximum (∼15 times) in the UV region at 10 K as compared to the Au/In2O3/Si devices. In addition, the Au/In2O3:Er/Si devices have better UV to visible cut-off ratio (∼3 times). Excellent temporal responses were recorded for Au/In2O3:Er/Si in the UV region as compared to Au/In2O3/Si

    A Conceptual Investigation at the Interface between Wireless Power Devices and CMOS Neuron IC for Retinal Image Acquisition

    No full text
    In this paper, a conceptual investigation of the interface between wireless power devices and a retina complementary metal oxide semiconductor (CMOS) neuron integrated circuit (IC) have been presented. The proposed investigation consists of three designs: design-I, design-II, and design-III. Design-I involves a slotted loop monopole antenna as per American National Standards Institute (ANSI) guidelines, which achieve an ultra-wide band ranging from 3.1 GHz to 10.6 GHz. The biocompatible antenna is made on silicon-nitride substrate using on-wafer packaging technology and it is used as a receiver device. The performance of antenna provides a wideband, sufficient power to receive, and low losses due to the avoidance of printed circuit board (PCB) fabrication. A CMOS based multi-stack power harvesting circuit achieves the output power ranging from 4 mW to 2.7 W and corresponds from the selected Radio Frequency (RF) bands of loop antenna is exhibited in design-II. The power efficiency of 40% to 82%, with respect to output powers of 4 mW to 2.7 W, is achieved. Design-III includes a CMOS based retina neuron circuit that employs a dynamic feedback technique and support to achieve the number of read-out spikes. At the end of the interface between wireless power devices and a CMOS retina neuron IC, 50 mV read-out spikes are achieved, with varying light intensity, from 0 mW/cm2 to 2 mW/cm2. The proposed design-II and design-III are implemented and fabricated using commercial CMOS 0.065 µm, Samsung process. The antenna and RF power harvesting IC could be placed on a contact lens platform while retina neuron IC can be implanted after ganglions cells inside the eye. The antenna and harvesting IC are physically connected to the retina circuit in the form of light. This conceptual investigation could support medical professionals in achieving an interfacing approach to restore the image visualization

    Ag/TiO 2

    No full text

    Design and Development of a Triple-Band Multiple-Input–Multiple-Output Antenna for Sensing Applications

    No full text
    In this article, a triple-band quad-element stacked multiple-input–multiple-output (MIMO) antenna is proposed for sensing applications. Each radiating element of the presented MIMO antenna consists of a diagonally truncated square patch, which is proximity coupled to the elliptical radiating patch. The proposed MIMO antenna is designed to resonate for three frequencies (4.2, 4.8, and 5.8 GHz) in the C-band range. The antenna shows circular polarization characteristics at 4.2 and 4.8 GHz frequencies. Each stacked element of the proposed antenna is excited independently through a 50 Ω coaxial feed. The Rogers RT Duroid/5880 dielectric substrate is used for the fabrication of two layers of the stacked MIMO antenna. The presented stacked MIMO antenna simulation and experimental outcomes are in good agreement

    A Novel Characterization and Performance Measurement of Memristor Devices for Synaptic Emulators in Advanced Neuro-Computing

    No full text
    The advanced neuro-computing field requires new memristor devices with great potential as synaptic emulators between pre- and postsynaptic neurons. This paper presents memristor devices with TiO2 Nanoparticles (NPs)/Ag(Silver) and Titanium Dioxide (TiO2) Nanoparticles (NPs)/Au(Gold) electrodes for synaptic emulators in an advanced neurocomputing application. A comparative study between Ag(Silver)- and Au(Gold)-based memristor devices is presented where the Ag electrode provides the improved performance, as compared to the Au electrode. Device characterization is observed by the Scanning Electron Microscope (SEM) image, which displays the grown electrode, while the morphology of nanoparticles (NPs) is verified by Atomic Force Microscopy (AFM). The resistive switching (RS) phenomena observed in Ag/TiO2 and Au/TiO2 shows the sweeping mechanism for low resistance and high resistance states. The resistive switching time of Au/TiO2 NPs and Ag/TiO2 NPs is calculated, while the theoretical validation of the memory window demonstrates memristor behavior as a synaptic emulator. Measurement of the capacitor–voltage curve shows that the memristor with Ag contact is a good candidate for charge storage as compared to Au. The classification of 3 × 3 pixel black/white image is demonstrated by the 3 × 3 cross bar memristor with pre- and post-neuron system. The proposed memristor devices with the Ag electrode demonstrate the adequate performance compared to the Au electrode, and may present noteworthy advantages in the field of neuromorphic computing
    corecore