521 research outputs found

    Industrial wastewater treatment using hydrodynamic cavitation and heterogeneous advanced Fenton processing

    Get PDF
    A combination of hydrodynamic cavitation and heterogeneous advanced Fenton process (AFP) based on the use of zero valent iron as the catalyst has been investigated for the treatment of real industrial wastewater. The effect of various operating parameters such as inlet pressure, temperature, and the presence of copper windings on the extent of mineralization as measured by total organic carbon (TOC) content have been studied with the aim of maximizing the extent of degradation. It has been observed that increased pressures, higher operating temperature and the absence of copper windings are more favourable for a rapid TOC mineralization. A new approach of latent remediation has also been investigated where hydrodynamic cavitation is only used as a pre-treatment with an aim of reducing the overall cost of pollutant degradation. It has been observed that approach of latent remediation works quite well with about 50–60% removal of TOC using only minimal initial treatment by hydrodynamic cavitation

    Mineralisation of 2,4-dichlorophenoxyacetic acid by acoustic or hydrodynamic cavitation in conjunction with the advanced Fenton process

    Get PDF
    The mineralisation of 2,4-dichlorophenoxyacetic acid (2,4-D) in the presence of zero-valent iron and hydrogen peroxide (the Advanced Fenton process – AFP) whilst being subjected to acoustic or hydrodynamic cavitation is reported. If the reaction is merely stirred then there is 57% removal of TOC whilst on irradiation the figure is 64% although the latter reaction is more rapid. Use of ultrasound alone results in only 11% TOC removal in 60 min of treatment time. Addition of iron powder marginally enhances the extent of degradation but an appreciable increase is observed in the presence of hydrogen peroxide which acts as a source for hydroxyl radicals by Fenton chemistry as well as by dissociation in the presence of ultrasound. The use of hydrodynamic cavitation in conjunction with the advanced Fenton process has also been found to be a useful tool for continuous remediation of water contaminated with 2,4-D. After 20 minutes of treatment the residual TOC is reduced to 30% and this probably represents the remaining highly recalcitrant small organic molecules

    Intensification of oxidation capacity using chloroalkanes as additives in hydrodynamic and acoustic cavitation reactors

    Get PDF
    The effect of the presence and absence of the chloroalkanes, dichloromethane (CH2Cl2), chloroform (CHCl3) and carbon tetrachloride (CCl4) on the extent of oxidation of aqueous I- to I3- has been investigated in (a) a liquid whistle reactor (LWR) generating hydrodynamic cavitation and (b) an ultrasonic probe, which produces acoustic cavitation. The aim has been to examine the intensification achieved in the extent of oxidation due to the generation of additional free radicals/oxidants in the reactor as a result of the presence of chloroalkanes. It has been observed that the extent of increase in the oxidation reaction is strongly dependent on the applied pressure in the case of the LWR. Also, higher volumes of the chloroalkanes favour the intensification and the order of effectiveness is CCl4> CHCl3 > CH2Cl2. However, the results with the ultrasonic probe suggest that an optimum concentration of CH2Cl2 or CHCl3 exists beyond which there is little increase in the extent of observed intensification. For CCl4, however, no such optimum concentration was observed and the extent of increase in the rates of oxidation reaction rose with the amount of CCl4 added. Stage wise addition of the chloroalkanes was found to give marginally better results in the case of the ultrasonic probe as compared to bulk addition at the start of the run. Although CCl4 is the most effective, its toxicity and carcinogenicity may mean that CH2Cl2 and CHCl3 offer a safer viable alternative and the present work should be useful in establishing the amount of chloroalkanes required for obtaining a suitable degree of intensification

    Intensification of hydroxyl radical production in sonochemical reactors

    Get PDF
    The efficacy of sonochemical reactors in chemical processing applications has been well established in the laboratory scale of operation though at a given set of operating parameters and no efforts have been directed in terms of maximizing the free radical production. In the present work, the effect of different operating parameters viz. pH, power dissipation into the system, effect of additives such as air, haloalkanes, titanium dioxide, iron and oxygen on the extent of hydroxyl radical formation in a sonochemical reactor have been investigated using salicylic acid dosimetry. Possible mechanisms for oxidation of salicylic acid in the presence of different additives have also been established. It has been observed that acidic conditions under optimized power dissipation in the presence of iron powder and oxygen result in maximum liberation of hydroxyl radicals as quantified by the kinetic rate constant for production of 2,5- and 2,3-dihydroxybenzoic acid. The study has enabled the optimization of the conditions for maximum efficacy of sonochemical reactors where free radical attack is the controlling mechanism for the chemical processing applications

    Prediction of patient outcomes through social determinants of health: The Pulmonary Hypertension Association Registry (PHAR) evaluation

    Get PDF
    Outcomes of patients with pulmonary arterial hypertension (PAH) may be associated with social determinants of health (SDOH) and other baseline patient characteristics. At present, there is no prognostic model to predict important patient outcomes in PAH based on SDOH. Utilizing information from the Pulmonary Hypertension Association Registry (PHAR), we derive a model (PHAR Evaluation or PHARE) to predict an important composite patient outcomes based on SDOH and other patient characteristics. Baseline data regarding SDOH from adult patients with PAH enrolled in the PHAR between 2015 and March 23, 2020, were included for analysis. We performed repeated measures logistic regression modeling with dichotomous outcome data (0 for no events, 1 for one or more events) to derive the PHARE. Here, 1275 consecutive adult patients enrolled in the PHAR from 47 participating centers were included. Variables included in our model are race, gender, ethnicity, household income, level of education, age, body mass index, drug use, alcohol use, marital status, and type of health insurance. Interaction effect between variables was analyzed and several interactions were also included in the PHARE. The PHARE shows

    Mineralisation of surfactants using ultrasound and the Advanced Fenton Process

    Get PDF
    The destruction of the surfactants, sodium dodecylbenzene sulfonate (DBS) and dodecyl pyridinium chloride (DPC), using an advanced oxidation process is described. The use of zero valent iron (ZVI) and hydrogen peroxide at pH = 2.5 (the advanced Fenton process), with and without, the application of 20 kHz ultrasound leads to extensive mineralisation of both materials as determined by total organic carbon (TOC)measurements. For DBS, merely stirring with ZVI and H2O2 at 20°C leads to a 51% decrease in TOC, but using 20 kHz ultrasound at 40°C, maintaining the pH at 2.5 throughout and adding extra amounts of ZVI and H2O2 during the degradation, then the extent of mineralisation of DBS is substantially increased to 93%. A similar result is seen for DPC where virtually no degradation occurs at 20°C, but if extra amounts of both ZVI and hydrogen peroxide are introduced during the reaction at 40°C and the pH is maintained at 2.5, then an 87% mineralisation of DPC is obtained. The slow latent remediation of both surfactants and the mechanism of degradation are also discussed

    Health disparities and treatment approaches in portopulmonary hypertension and idiopathic pulmonary arterial hypertension: An analysis of the Pulmonary Hypertension Association Registry

    Get PDF
    Compared to idiopathic pulmonary arterial hypertension (IPAH), patients with portopulmonary hypertension (POPH) have worse survival. Health disparities may contribute to these differences but have not been studied. We sought to compare socioeconomic factors in patients with POPH and IPAH and to determine whether socioeconomic status and/or POPH diagnosis were associated with treatment and health-care utilization. We performed a cross-sectional study of adults enrolled in the Pulmonary Hypertension Association Registry. Patients with IPAH (n = 344) and POPH (n = 57) were compared. Compared with IPAH, patients with POPH were less likely to be college graduates (19.6% vs. 34.9%, p = 0.02) and more likely to be unemployed (54.7% vs. 30.5%, p \u3c 0.001) and have an annual household income below poverty level (45.7% vs. 19.0%, p \u3c 0.001). Patients with POPH had similar functional class, quality of life, 6-min walk distance, and mean pulmonary arterial pressure with a higher cardiac index. Compared with IPAH, patients with POPH were less likely to receive combination therapy (46.4% vs. 62.2%, p = 0.03) and endothelin receptor antagonists (28.6% vs. 55.1%, p \u3c 0.001) at enrollment with similar treatment at follow-up. Patients with POPH had more emergency department visits (1.7 ± 2.1 vs. 0.9 ± 1.2, p = 0.009) and hospitalizations in the six months preceding enrollment (1.5 ± 2.1 vs. 0.8 ± 1.1, p = 0.02). Both POPH diagnosis and lower education level were independently associated with a higher number of emergency department visits. Compared to IPAH, patients with POPH have lower socioeconomic status, are less likely to receive initial combination therapy and endothelin receptor antagonists but have similar treatment at follow-up, and have increased health-care utilization

    Impact of the COVID-19 pandemic on chronic disease management and patient reported outcomes in patients with pulmonary hypertension: The Pulmonary Hypertension Association Registry

    Get PDF
    To better understand the impact of the COVID-19 pandemic on the care of patients with pulmonary hypertension, we conducted a retrospective cohort study evaluating health insurance status, healthcare access, disease severity, and patient reported outcomes in this population. Using the Pulmonary Hypertension Association Registry (PHAR), we defined and extracted a longitudinal cohort of pulmonary arterial hypertension (PAH) patients from the PHAR\u27s inception in 2015 until March 2022. We used generalized estimating equations to model the impact of the COVID-19 pandemic on patient outcomes, adjusting for demographic confounders. We assessed whether insurance status modified these effects via covariate interactions. PAH patients were more likely to be on publicly-sponsored insurance during the COVID-19 pandemic compared with prior, and did not experience statistically significant delays in access to medications, increased emergency room visits or nights in the hospital, or worsening of mental health metrics. Patients on publicly-sponsored insurance had higher healthcare utilization and worse objective measures of disease severity compared with privately insured individuals irrespective of the COVID-19 pandemic. The relatively small impact of the COVID-19 pandemic on pulmonary hypertension-related outcomes was unexpected but may be due to pre-established access to high quality care at pulmonary hypertension comprehensive care centers. Irrespective of the COVID-19 pandemic, patients who were on publicly-sponsored insurance seemed to do worse, consistent with prior studies highlighting outcomes in this population. We speculate that previously established care relationships may lessen the impact of an acute event, such as a pandemic, on patients with chronic illness

    Performance comparison of photocatalysts for degradation of organic pollutants using experimental studies supported with DFT and fundamental characterization

    Get PDF
    The effect of different metal supported TiO2 catalysts on the photocatalytic degradation of p-Nitrophenol (PNP) was investigated experimentally and supported by Density Functional Theory (DFT) approach. Process optimization studies were carried out using the best performing catalyst and the effect of different electron acceptors was also investigated. Degradation was strongly influenced by operating parameters and oxidants with efficacy as H2O2 > K2S2O8 > air. DFT simulations confirmed higher electrostatic potential in presence of hydroxyl radicals explaining the higher degradation. Overall, this work clearly establishes the effectiveness of electron acceptors in maximizing PNP degradation and explains the interaction of organic pollutants with different radicals

    Photocatalytic degradation of methylene blue using monometallic and bimetallic Bi-Fe doped TiO2

    Get PDF
    This work reports synthesis and characterization of mono and bimetal doped TiO2-based photocatalyts using Bi and Fe metals prepared via wet impregnation method. Photocatalytic performances of the synthesized catalysts were tested for the degradation of methylene blue. Results revealed that 1%Bi/TiO2 (w/w) exhibited best photocatalytic performance and achieved 80% degradation of 50 ppm MB solution within two hours. The monometallic doping showed better performance than the bimetallic doping of Bi and Fe. This diminished performance with co-doping was due to the agglomeration effect which accelerates recombination of electrons and holes. First order-kinetic model was used for the study of degradation
    corecore