19 research outputs found

    Use of TBzTD as Noncarcinogenic Accelerator for ENR/SiO2 Nanocomposites: Cured Characteristics, Mechanical Properties, Thermal Behaviors, and Oil Resistance

    No full text
    This study reported the use of tetrabenzylthiuram disulphide (TBzTD) as a noncarcinogenic accelerator in a traditional sulfur curing system of epoxidized natural rubber (ENR)/nanosilica (nSiO2) composites. ENR used in this work was synthesized via in situ epoxidation of natural rubber (NR) in the presence of performic acid generated from the reaction of formic acid and hydrogen peroxide at 50°C for 8 h to acquire the epoxide content of about 40 mol%. Accordingly, the resulting ENR was referred to as ENR 40. The curing characteristics, mechanical properties, thermal behaviors, dynamic mechanical properties, and oil resistance of ENR 40/nSiO2 nanocomposites filled with three loadings of nSiO2 (1, 2, and 3 parts per hundred parts of rubber) were investigated and compared with NR and neat ENR 40. The results revealed that the scorch and cure times of ENR 40/nSiO2 nanocomposites were slightly longer than those of NR but slightly shorter than those of ENR 40. The tensile properties and tear strength for both before and after aging of all ENR 40/nSiO2 nanocomposites were higher than those of ENR 40, while the glass transition temperature, storage modulus at −65°C, thermal stability, and oil resistance of ENR 40/nSiO2 nanocomposites were higher than those of NR and ENR 40

    Nanocomposites of NR/SBR Blend Prepared by Latex Casting Method: Effects of Nano-TiO2 and Polystyrene-Encapsulated Nano-TiO2 on the Cure Characteristics, Physical Properties, and Morphology

    No full text
    Nanocomposites of 80/20 (w/w) natural rubber (NR)/styrene butadiene rubber (SBR) blend with four loadings of either nanosized titanium dioxide (nTiO2) or polystyrene-encapsulated nTiO2 (PS-nTiO2), ranging from 3 to 9 parts by weight per hundred of rubber (phr), were prepared by latex casting method. The PS-nTiO2 synthesized via in situ differential microemulsion polymerization displayed a core-shell morphology (nTiO2 core and PS shell) with an average diameter of 42 nm. The cure characteristics (scorch time, cure time, and cure rate index), mechanical properties (tensile properties, tear strength, and hardness), thermal stability, glass transition temperature, and morphology of the prepared nanocomposites were quantified and compared. The results showed that the cure characteristics of all the nanocomposites were not significantly changed compared to those of the neat NR/SBR blend. The inclusion of an appropriate amount of either nTiO2 or PS-nTiO2 into the NR/SBR blend apparently improved the tensile strength, modulus at 300% strain, tear strength, hardness, and thermal stability but deteriorated the elongation at break of the nanocomposites. Based on differential scanning calorimetry, the glass transition temperature of all the nanocomposites was similar to that of the neat NR/SBR blend. Moreover, the morphology of the PS-nTiO2-filled rubber nanocomposites fractured surface analyzed by scanning electron microscopy showed an improvement in the interfacial adhesion between the rubber phase and the nanoparticles

    Mechanical properties of wollastonite reinforced thermoplastic composites: A review

    No full text
    Wollastonite is a functional filler that has great potential to be used in thermoplastic composites, replacing more expensive reinforcement such as glass fiber. Wollastonite-reinforced polymer composite materials have attracted the attentions from research field and industries due to their biocompatibility and reinforcing ability in polymers. Due to the relatively high aspect ratio and hardness, wollastonite is able to improve the tensile and flexural strength of polymer composites. Many researches have been conducted to determine various properties of wollastonite reinforced polymer composites such as mechanical, flammability, thermal, and tribological properties in order to explore their potential in various applications. This review will focus on mechanical properties of wollastonite reinforced thermoplastic composites. Overall, it can be concluded that the properties of wollastonite-filled polymer composites are the function of filler content, adhesion interactions of wollastonite particles with polymer matrix, size and shape of wollastonite particles. Further research and development are needed to widen its application, and these include the use of nano-size wollastonite which can be produced synthetically as functional filler in thermoplastics
    corecore