67 research outputs found

    A Study of the December 1992 Westerly Wind Burst Event during TOGA COARE

    Get PDF
    Using the Penn State/NCAR MM5 mesoscale model, a westerly wind burst (WWB) that occurred during the period from 19 to 30 December 1992 over the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) has been simulated and compared with observation. This event is characterized by the presence of super cloud clusters and the occurrence of a major WWB that extended over the western and central Pacific Ocean. Although several of the observed convective systems were not precisely simulated by MM5, the model did capture many other observed characteristics, such as the explosive development of convection, the cyclonic circulation and the WWB. The WWB resulted from the coalescence of three types of tropical disturbances. The first type was a low-level westerly jet (LWJ) that developed at the equator and may be associated with the eastward propagation of an ISO (Intraseasonal Oscillation). The second type featured an easterly wave-like disturbance that originated in the south central Pacific Ocean and propagated westward. Finally, the third type involved a cross-equatorial flow that deflected Northern Hemispheric easterlies into the Southern Hemisphere and may be caused by inertial instability. These disturbances worked in concert, resulting in intense convection over the TOGA COARE region. Once intense convection developed, a large-scale circulation was produced over the western Pacific warm pool, propagated eastward, and initiated a WWB

    Transport reduction by current profile control in the reversedā€field pinch

    Full text link
    This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder

    Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume

    Get PDF
    The concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimerā€™s Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-Ī² PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimerā€™s Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-Ī² positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimerā€™s disease-related phenotypes, including measures of cognition or brain Amyloid-Ī² burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes

    Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference

    Get PDF
    The heterogeneity of neurodegenerative diseases is a key confound to disease understanding and treatment development, as study cohorts typically include multiple phenotypes on distinct disease trajectories. Here we introduce a machine-learning technique\u2014Subtype and Stage Inference (SuStaIn)\u2014able to uncover data-driven disease phenotypes with distinct temporal progression patterns, from widely available cross-sectional patient studies. Results from imaging studies in two neurodegenerative diseases reveal subgroups and their distinct trajectories of regional neurodegeneration. In genetic frontotemporal dementia, SuStaIn identifies genotypes from imaging alone, validating its ability to identify subtypes; further the technique reveals within-genotype heterogeneity. In Alzheimer\u2019s disease, SuStaIn uncovers three subtypes, uniquely characterising their temporal complexity. SuStaIn provides fine-grained patient stratification, which substantially enhances the ability to predict conversion between diagnostic categories over standard models that ignore subtype (p = 7.18 7 10 124 ) or temporal stage (p = 3.96 7 10 125 ). SuStaIn offers new promise for enabling disease subtype discovery and precision medicine

    Thermal and fire stability of cotton fabrics coated with hybrid phosphorus-doped silica films

    No full text
    Hybrid phosphorus-doped silica films have been prepared through sol-gel processes to enhance the thermal and fire stability of cotton. To this aim, 3-aminopropyltriethoxysilane and N,N,N0,N0,N00,N00-hexakis-methoxymethyl-[1,3,5]triazine-2,4,6-triamine have been reacted with diethylphosphatoethyltriethoxysilane. FT-IR spectroscopy was exploited for assessing the formation of the silica skeleton on the cotton surface and for evaluating the interactions between the cellulosic fibres and the doped film. The effect of the concurrent presence of Si, P and N on cotton has been investigated by thermogravimetric analyses and the flammability behaviour has been assessed by vertical flammability tests, as well. The sol-gel treatments in the presence of phosphorus and nitrogen turned out to play a protective role on the degradation of the cotton fibres, hindering the formation of volatile species that fuel the further degradation and favouring the formation of a carbonaceous structur
    • ā€¦
    corecore