4 research outputs found

    Port exteriorization appendectomy in children: An alternative to the conventional laparoscopic technique?

    Get PDF
    Introduction Laparoscopic appendectomy is usually performed using an  intracorporeal approach. The conventional procedure uses three ports. The port exteriorization appendectomy uses two trocars to perform the entire procedure and  can be considered an efficient alternative to the conventional approach, especially  in case of nonavailability of adequate material. We report our experience using port exteriorization appendectomy with the aim of evaluating this technique and  determining its feasibility for all grades of appendicitis.Patients and methods Between May 2013 and January 2014, 193 appendectomies  were performed in our department; in 50 cases (26%), a port exteriorization appendectomy was performed. Technical challenges, complications, and  postoperative recovery were determined and analyzed.Conclusion Port exteriorization appendectomy can beconsidered a safe and  economical approach to perform  pediatric appendectomy when conditions are  favorable. It allows minimizing minimally invasive surgery even further, enabling a low level of invasiveness and resulting in postoperative pain.Keywords: appendectomy, children, laparoscopy, port exteriorizatio

    A New Zn(II) Metal Hybrid Material of 5-Nitrobenzimidazolium Organic Cation (C7H6N3O2)2[ZnCl4]: Elaboration, Structure, Hirshfeld Surface, Spectroscopic, Molecular Docking Analysis, Electric and Dielectric Properties

    Get PDF
    The slow solvent evaporation approach was used to create a single crystal of (CHNO)[ZnCl] at room temperature. Our compound has been investigated by single-crystal XRD which declares that the complex crystallizes in the monoclinic crystallographic system with the P2/c as a space group. The molecular arrangement of the compound can be described by slightly distorted tetrahedral ZnCl anionic entities and 5-nitrobenzimidazolium as cations, linked together by different non-covalent interaction types (H-bonds, Cl…Cl, π…π and C–H…π). Hirshfeld’s surface study allows us to identify that the dominant contacts in the crystal building are H…Cl/Cl…H contacts (37.3%). FT-IR method was used to identify the different groups in (CHNO)[ZnCl]. Furthermore, impedance spectroscopy analysis in 393 ≤ T ≤ 438 K shows that the temperature dependence of DC conductivity follows Arrhenius’ law. The frequency–temperature dependence of AC conductivity for the studied sample shows one region (E = 2.75 eV). In order to determine modes of interactions of compound with double stranded DNA, molecular docking simulations were performed at molecular level

    Stabilization of Tetrachloride with Mn (II) and Co (II)Complexes and 4-Tert-Butylpyridinium Organic Cation: Elaboration of the Structure and Hirshfeld Surface, Optical, Spectroscopic and Thermal Analyses

    No full text
    [C9H14N]2[MnCl4] (I) and [C9H14N]2[CoCl4] (II) are isostructural compounds produced via gradual evaporation at room temperature. Both compounds consolidate in the tetragonal space group I4¯2d (No. 122), as shown by single-crystal X-ray diffraction observations. A slightly deformed tetrahedral geometry is formed by four chloride atoms around each cation MII (M = Mn or Co). The [C9H14N]+ groups and the isolated [MCl4]2− units are connected via C–H…Cl and N–H…Cl H-bonds to form sheets parallel to the (101¯), (011), (01¯1) and (101) planes. The morphology and the chemical composition of compounds (I) and (II)were determined here using SEM and EDX. The functional groups contained in both compounds were determined using FT-IR spectroscopy. The study of the optical characteristics showed that the two compounds exhibited semiconductor behavior. The thermal analysis (TGA-DTA) was used to determine their thermal stability
    corecore