212 research outputs found

    Primary Productivity and Water Use of the Perennial Grass, Cenchrus Ciliaris, in Arid Environments

    Get PDF
    Cenchrus ciliaris is a perennial grass that may be suitable for the restoration of Rhanterium steppes (Chaieb et al., 1991). In this study, four Cenchrus ciliaris accessions from Tunisia from a range of climate and soil conditions, likely to vary in their adaptation to drought, were evaluated for productivity, rainuse-efficiency and reproductive output at Sfax in southern Tunisia. The suitability of these accessions for the restoration of Rhanterium steppes is considered

    Verifying Safety Properties With the TLA+ Proof System

    Get PDF
    TLAPS, the TLA+ proof system, is a platform for the development and mechanical verification of TLA+ proofs written in a declarative style requiring little background beyond elementary mathematics. The language supports hierarchical and non-linear proof construction and verification, and it is independent of any verification tool or strategy. A Proof Manager uses backend verifiers such as theorem provers, proof assistants, SMT solvers, and decision procedures to check TLA+ proofs. This paper documents the first public release of TLAPS, distributed with a BSD-like license. It handles almost all the non-temporal part of TLA+ as well as the temporal reasoning needed to prove standard safety properties, in particular invariance and step simulation, but not liveness properties

    Antifungal activity and chemical composition of seven essential oils to control the main seedborne fungi of cucurbits

    Get PDF
    none9siEssential oils represent novel alternatives to application of synthetic fungicides to control against seedborne pathogens. This study investigated seven essential oils for in vitro growth inhibition of the main seedborne pathogens of cucurbits. Cymbopogon citratus essential oil completely inhibited mycelial growth of Stagonosporopsis cucurbitacearum and Alternaria alternata at 0.6 and 0.9 mg/mL, respectively. At 1 mg/mL, Lavandula dentata, Lavandula hybrida, Melaleuca alternifolia, Laurus nobilis, and two Origanum majorana essential oils inhibited mycelia growth of A. alternata by 54%, 71%, 68%, 36%, 90%, and 74%, respectively. S. cucurbitacearum mycelia growth was more sensitive to Lavandula essential oils, with inhibition of ~74% at 1 mg/mL. To determine the main compounds in these essential oils that might be responsible for this antifungal activity, they were analyzed by gas chromatography–mass spectrometry (GC-MS). C. citratus essential oil showed cirtal as its main constituent, while L. dentata and L. nobilis essential oils showed eucalyptol. The M. alternifolia and two O. majorana essential oils had terpinen-4-ol as the major constituent, while for L. hybrida essential oil, this was linalool. Thus, in vitro, these essential oils can inhibit the main seedborne fungi of cucurbits, with future in vivo studies now needed to confirm these activities.openMoumni M.; Romanazzi G.; Najar B.; Pistelli L.; Amara H.B.; Mezrioui K.; Karous O.; Chaieb I.; Allagui M.B.Moumni, M.; Romanazzi, G.; Najar, B.; Pistelli, L.; Amara, H. B.; Mezrioui, K.; Karous, O.; Chaieb, I.; Allagui, M. B

    Phase transition of triangulated spherical surfaces with elastic skeletons

    Full text link
    A first-order transition is numerically found in a spherical surface model with skeletons, which are linked to each other at junctions. The shape of the triangulated surfaces is maintained by skeletons, which have a one-dimensional bending elasticity characterized by the bending rigidity bb, and the surfaces have no two-dimensional bending elasticity except at the junctions. The surfaces swell and become spherical at large bb and collapse and crumple at small bb. These two phases are separated from each other by the first-order transition. Although both of the surfaces and the skeleton are allowed to self-intersect and, hence, phantom, our results indicate a possible phase transition in biological or artificial membranes whose shape is maintained by cytoskeletons.Comment: 15 pages with 10 figure

    Insights into the influence of the Ag loading on Al2O3 in the H2-assisted C3H6-SCR of NOx

    Get PDF
    International audienceThe addition of H2 has been reported to promote drastically the selective catalytic reduction of NOx by hydrocarbons (HC-SCR). Yet, the influence of the Ag loading on the H2-promoted HC-SCR has been the subject of a very limited number of investigations. The H2-HC-SCR earlier studies reported mostly on Ag/Al2O3 samples containing about 2 wt% Ag, since this particular loading has been shown to provide optimum catalytic performances in the HC-SCR reaction in the absence of H2. The present study highlights for the first time that the H2-C3H6-SCR catalytic performances of Ag/Al2O3 samples improved in the 150–550 °C temperature domain as the Ag loading (Ag surface density: x (View the MathML sourceAg/nmAl2O32)) decreased well below 2 wt%. A detailed kinetic study of H2-C3H6-SCR was performed in which the reaction orders in NO, C3H6 and H2, and the apparent activation energies were determined for the reduction of NOx to N2 on a Ag(x)/Al2O3 catalysts series, for which Ag was found to be in a highly dispersed state by TEM and HAADF-STEM. Remarkably, changes in these kinetic parameters were found to occur at an Ag surface density close to View the MathML source0.7 Ag/nmAl2O32 (Ag loading of 2.2 wt%) coinciding with the changes observed earlier in the NOx uptakes of the Al2O3 supporting oxide [18]. Interpretation of the activity and kinetic data led us to conclude that the H2-C3H6-SCR reaction proceeds via the activation of H2 and C3H6 on Ag species and their further reaction with NOx adspecies activated on the Al2O3 support. The unexpected higher catalytic performances of the Ag samples with the lower Ag surface densities was attributed to the higher concentration of active sites on the Al2O3 supporting oxide able to chemisorb NOx species, in agreement with the NOx uptake data. The kinetic data obtained for Ag surface densities lower than View the MathML source0.7 Ag/nmAl2O32 also suggest that the interaction between NOx and C3H6 adspecies would be rate determining in the C3H6-SCR process

    Phase transition of meshwork models for spherical membranes

    Full text link
    We have studied two types of meshwork models by using the canonical Monte Carlo simulation technique. The first meshwork model has elastic junctions, which are composed of vertices, bonds, and triangles, while the second model has rigid junctions, which are hexagonal (or pentagonal) rigid plates. Two-dimensional elasticity is assumed only at the elastic junctions in the first model, and no two-dimensional bending elasticity is assumed in the second model. Both of the meshworks are of spherical topology. We find that both models undergo a first-order collapsing transition between the smooth spherical phase and the collapsed phase. The Hausdorff dimension of the smooth phase is H\simeq 2 in both models as expected. It is also found that H\simeq 2 in the collapsed phase of the second model, and that H is relatively larger than 2 in the collapsed phase of the first model, but it remains in the physical bound, i.e., H<3. Moreover, the first model undergoes a discontinuous surface fluctuation transition at the same transition point as that of the collapsing transition, while the second model undergoes a continuous transition of surface fluctuation. This indicates that the phase structure of the meshwork model is weakly dependent on the elasticity at the junctions.Comment: 21 pages, 12 figure

    Fractionation of a Herbal Antidiarrheal Medicine Reveals Eugenol as an Inhibitor of Ca2+-Activated Cl− Channel TMEM16A

    Get PDF
    The Ca2+-activated Cl− channel TMEM16A is involved in epithelial fluid secretion, smooth muscle contraction and neurosensory signaling. We identified a Thai herbal antidiarrheal formulation that inhibited TMEM16A Cl− conductance. C18-reversed-phase HPLC fractionation of the herbal formulation revealed >98% of TMEM16A inhibition activity in one out of approximately 20 distinct peaks. The purified, active compound was identified as eugenol (4-allyl-2-methoxyphenol), the major component of clove oil. Eugenol fully inhibited TMEM16A Cl− conductance with single-site IC50∼150 µM. Eugenol inhibition of TMEM16A in interstitial cells of Cajal produced strong inhibition of intestinal contraction in mouse ileal segments. TMEM16A Cl− channel inhibition adds to the list of eugenol molecular targets and may account for some of its biological activities

    Antibacterial activity of Thymoquinone, an active principle of Nigella sativa and its potency to prevent bacterial biofilm formation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thymoquinone is an active principle of <it>Nigella sativa </it>seed known as "Habbah Al-Sauda" in Arabic countries and "Sinouj" in Tunisia. Bacterial biofilms tend to exhibit significant tolerance to antimicrobials drugs during infections.</p> <p>Methods</p> <p>The antibacterial activity of Thymoquinone (TQ) and its biofilm inhibition potencies were investigated on 11 human pathogenic bacteria. The growth and development of the biofilm were assessed using the crystal violet (CV) and the 2, 3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT) reduction assay.</p> <p>Results</p> <p>TQ exhibited a significant bactericidal activity against the majority of the tested bacteria (MICs values ranged from 8 to 32 μg/ml) especially Gram positive cocci (<it>Staphylococcus aureus </it>ATCC 25923 and <it>Staphylococcus epidermidis </it>CIP 106510). Crystal violet assay demonstrated that the minimum biofilm inhibition concentration (BIC50) was reached with 22 and 60 μg/ml for <it>Staphylococcus aureus </it>ATCC 25923 and <it>Staphylococcus epidermidis </it>CIP 106510 respectively. In addition our data revealed that cells oxidative activity was influenced by TQ supplementation. In the same way, TQ prevented cell adhesion to glass slides surface.</p> <p>Conclusion</p> <p>The ability of TQ to prevent biofilm formation warrants further investigation to explore its use as bioactive substances with antibiofilm potential.</p
    corecore