429 research outputs found

    Participation in Cardiac Rehabilitation Program for Patients with Different Risk Categories in Sarawak Heart Center

    Get PDF
    Objective: Exercise therapy and education program are two important components of cardiac rehabilitation program (CRP). Compliance to the prescribed program is important in order to achieve the desired therapeutic effects. The study compared the various risk categories of participation in the CRP. Methods: This cross-sectional retrospective study enrolled 148 consecutive patients who attended the CRP in Sarawak Heart Center from March 2014 to February 2015. Subsequently, 106 patients proceeded for exercise stress test (EST) prior to enrolling into CRP. We analyzed the demographic, functional profile, association between risk category and participation in CRP. Results: The results showed that the cohort mean age was 54 years with a range of 30 and 75. As for functional assessment with six minute walk test, our participants could cover a varying distance of 132 to 600 meters with a mean distance of 407 meters. The mean maximum workload achievable for EST was 8.2 Mets (range 1.4-14.5 Mets). All low risk group patients were enrolled into the full program with only 8% default rate. 84.7% of moderate risk group entered the program with 15.3% default rate. Fifty percent of the high-risk group enrolled for the full program when they could achieve more than 4 Mets of maximum workload during the EST. The remaining of the high risk group alternatively participated in the education program which recorded the highest default rate of 18.2%. The low risk group had the best compliance rate which could be attributed to higher exercise program enjoyment. This study showed the association of the different risk categories and the level of participation in our center CRP. Conclusion: Our cardiac rehabilitation program had overall high participation rate in all risk categories, we could improve further the level of participation for the high risk group by introducing telemetry monitoring which allow more patients to enroll in full program

    A Hybrid Time-Scaling Transformation for Time-Delay Optimal Control Problems

    Get PDF
    In this paper, we consider a class of nonlinear time-delay optimal control problems with canonical equality and inequality constraints. We propose a new computational approach, which combines the control parameterization technique with a hybrid time-scaling strategy, for solving this class of optimal control problems. The proposed approach involves approximating the control variables by piecewise constant functions, whose heights and switching times are decision variables to be optimized. Then, the resulting problem with varying switching times is transformed, via a new hybrid time-scaling strategy, into an equivalent problem with fixed switching times, which is much preferred for numerical computation. Our new time-scaling strategy is hybrid in the sense that it is related to two coupled time-delay systems—one defined on the original time scale, in which the switching times are variable, the other defined on the new time scale, in which the switching times are fixed. This is different from the conventional time-scaling transformation widely used in the literature, which is not applicable to systems with time-delays. To demonstrate the effectiveness of the proposed approach, we solve four numerical examples. The results show that the costs obtained by our new approach are lower, when compared with those obtained by existing optimal control methods

    Monoclonal antibody levels and protection from COVID-19

    Full text link
    Multiple monoclonal antibodies have been shown to be effective for both prophylaxis and therapy for SARS-CoV-2 infection. Here we aggregate data from randomized controlled trials assessing the use of monoclonal antibodies (mAb) in preventing symptomatic SARS-CoV-2 infection. We use data on the in vivo concentration of mAb and the associated protection from COVID-19 over time to model the dose-response relationship of mAb for prophylaxis. We estimate that 50% protection from COVID-19 is achieved with a mAb concentration of 96-fold of the in vitro IC50 (95% CI: 32—285). This relationship provides a tool for predicting the prophylactic efficacy of new mAb and against SARS-CoV-2 variants. Finally, we compare the relationship between neutralization titer and protection from COVID-19 after either mAb treatment or vaccination. We find no significant difference between the 50% protective titer for mAb and vaccination, although sample sizes limited the power to detect a difference

    Determinants of passive antibody efficacy in SARS-CoV-2 infection: a systematic review and meta-analysis

    Full text link
    Background: Randomised controlled trials of passive antibodies as treatment and prophylaxis for COVID-19 have reported variable efficacy. However, the determinants of efficacy have not been identified. We aimed to assess how the dose and timing of administration affect treatment outcome. Methods: In this systematic review and meta-analysis, we extracted data from published studies of passive antibody treatment from Jan 1, 2019, to Jan 31, 2023, that were identified by searching multiple databases, including MEDLINE, PubMed, and ClinicalTrials.gov. We included only randomised controlled trials of passive antibody administration for the prevention or treatment of COVID-19. To compare administered antibody dose between different treatments, we used data on in-vitro neutralisation titres to normalise dose by antibody potency. We used mixed-effects regression and model fitting to analyse the relationship between timing, dose and efficacy. Findings: We found 58 randomised controlled trials that investigated passive antibody therapies for the treatment or prevention of COVID-19. Earlier clinical stage at treatment initiation was highly predictive of the efficacy of both monoclonal antibodies (p<0·0001) and convalescent plasma therapy (p=0·030) in preventing progression to subsequent stages, with either prophylaxis or treatment in outpatients showing the greatest effects. For the treatment of outpatients with COVID-19, we found a significant association between the dose administered and efficacy in preventing hospitalisation (relative risk 0·77; p<0·0001). Using this relationship, we predicted that no approved monoclonal antibody was expected to provide more than 30% efficacy against some omicron (B.1.1.529) subvariants, such as BQ.1.1. Interpretation: Early administration before hospitalisation and sufficient doses of passive antibody therapy are crucial to achieving high efficacy in preventing clinical progression. The relationship between dose and efficacy provides a framework for the rational assessment of future passive antibody prophylaxis and treatment strategies for COVID-19. Funding: The Australian Government Department of Health, Medical Research Future Fund, National Health and Medical Research Council, the University of New South Wales, Monash University, Haematology Society of Australia and New Zealand, Leukaemia Foundation, and the Victorian Government

    Silencing of the Rotavirus NSP4 Protein Decreases the Incidence of Biliary Atresia in Murine Model

    Get PDF
    Biliary atresia is a common disease in neonates which causes obstructive jaundice and progressive hepatic fibrosis. Our previous studies indicate that rotavirus infection is an initiator in the pathogenesis of experimental biliary atresia (BA) through the induction of increased nuclear factor-kappaB and abnormal activation of the osteopontin inflammation pathway. In the setting of rotavirus infection, rotavirus nonstructural protein 4 (NSP4) serves as an important immunogen, viral protein 7 (VP7) is necessary in rotavirus maturity and viral protein 4 (VP4) is a virulence determiner. The purpose of the current study is to clarify the roles of NSP4, VP7 and VP4 in the pathogenesis of experimental BA. Primary cultured extrahepatic biliary epithelia were infected with Rotavirus (mmu18006). Small interfering RNA targeting NSP4, VP7 or VP4 was transfected before rotavirus infection both in vitro and in vivo. We analyzed the incidence of BA, morphological change, morphogenesis of viral particles and viral mRNA and protein expression. The in vitro experiments showed NSP4 silencing decreased the levels of VP7 and VP4, reduced viral particles and decreased cytopathic effect. NSP4-positive cells had strongly positive expression of integrin subunit α2. Silencing of VP7 or VP4 partially decreased epithelial injury. Animal experiments indicated after NSP4 silencing, mouse pups had lower incidence of BA than after VP7 or VP4 silencing. However, 33.3% of VP4-silenced pups (N = 6) suffered BA and 50% of pups (N = 6) suffered biliary injury after VP7 silencing. Hepatic injury was decreased after NSP4 or VP4 silencing. Neither VP4 nor VP7 were detected in the biliary ducts after NSP4. All together, NSP4 silencing down-regulates VP7 and VP4, resulting in decreased incidence of BA

    Movement of the external ear in human embryo

    Get PDF
    Introduction: External ears, one of the major face components, show an interesting movement during craniofacial morphogenesis in human embryo. The present study was performed to see if movement of the external ears in a human embryo could be explained by differential growth. Methods: In all, 171 samples between Carnegie stage (CS) 17 and CS 23 were selected from MR image datasets of human embryos obtained from the Kyoto Collection of Human Embryos. The three-dimensional absolute positio

    Kinematic Plasticity during Flight in Fruit Bats: Individual Variability in Response to Loading

    Get PDF
    All bats experience daily and seasonal fluctuation in body mass. An increase in mass requires changes in flight kinematics to produce the extra lift necessary to compensate for increased weight. How bats modify their kinematics to increase lift, however, is not well understood. In this study, we investigated the effect of a 20% increase in mass on flight kinematics for Cynopterus brachyotis, the lesser dog-faced fruit bat. We reconstructed the 3D wing kinematics and how they changed with the additional mass. Bats showed a marked change in wing kinematics in response to loading, but changes varied among individuals. Each bat adjusted a different combination of kinematic parameters to increase lift, indicating that aerodynamic force generation can be modulated in multiple ways. Two main kinematic strategies were distinguished: bats either changed the motion of the wings by primarily increasing wingbeat frequency, or changed the configuration of the wings by increasing wing area and camber. The complex, individual-dependent response to increased loading in our bats points to an underappreciated aspect of locomotor control, in which the inherent complexity of the biomechanical system allows for kinematic plasticity. The kinematic plasticity and functional redundancy observed in bat flight can have evolutionary consequences, such as an increase potential for morphological and kinematic diversification due to weakened locomotor trade-offs

    Cryptosporidium Priming Is More Effective than Vaccine for Protection against Cryptosporidiosis in a Murine Protein Malnutrition Model

    Get PDF
    Cryptosporidium is a major cause of severe diarrhea, especially in malnourished children. Using a murine model of C. parvum oocyst challenge that recapitulates clinical features of severe cryptosporidiosis during malnutrition, we interrogated the effect of protein malnutrition (PM) on primary and secondary responses to C. parvum challenge, and tested the differential ability of mucosal priming strategies to overcome the PM-induced susceptibility. We determined that while PM fundamentally alters systemic and mucosal primary immune responses to Cryptosporidium, priming with C. parvum (106 oocysts) provides robust protective immunity against re-challenge despite ongoing PM. C. parvum priming restores mucosal Th1-type effectors (CD3+CD8+CD103+ T-cells) and cytokines (IFNÎł, and IL12p40) that otherwise decrease with ongoing PM. Vaccination strategies with Cryptosporidium antigens expressed in the S. Typhi vector 908htr, however, do not enhance Th1-type responses to C. parvum challenge during PM, even though vaccination strongly boosts immunity in challenged fully nourished hosts. Remote non-specific exposures to the attenuated S. Typhi vector alone or the TLR9 agonist CpG ODN-1668 can partially attenuate C. parvum severity during PM, but neither as effectively as viable C. parvum priming. We conclude that although PM interferes with basal and vaccine-boosted immune responses to C. parvum, sustained reductions in disease severity are possible through mucosal activators of host defenses, and specifically C. parvum priming can elicit impressively robust Th1-type protective immunity despite ongoing protein malnutrition. These findings add insight into potential correlates of Cryptosporidium immunity and future vaccine strategies in malnourished children
    • 

    corecore