1,855 research outputs found

    On Propagation Characteristics of Reconfigurable Surface Wave Platform: Simulation and Experimental Verification

    Full text link
    Reconfigurable intelligent surface (RIS) as a smart reflector is revolutionizing research for next-generation wireless communications. Complementing this is a concept of using RIS as an efficient propagation medium for potentially superior path loss characteristics. Motivated by a recent porous surface architecture that facilitates reconfigurable pathways with cavities filled with fluid metal, this paper studies the propagation characteristics of different pathway configurations in different lossy materials on the reconfigurable surface wave platform by using a commercial full electromagnetic simulation software and S-parameters experiments. This paper also looks into the best scheme to switch between a straight pathway and a 90∘90^\circ-bend and attempts to quantify the additional path loss when making a turn. Our experimental results verify the simulation results, showing the effectiveness of the proposed reconfigurable surface wave platform for a wide-band, low path loss and highly programmable communications.Comment: Submitted to IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 202

    Coherent vortex structures and 3D enstrophy cascade

    Full text link
    Existence of 2D enstrophy cascade in a suitable mathematical setting, and under suitable conditions compatible with 2D turbulence phenomenology, is known both in the Fourier and in the physical scales. The goal of this paper is to show that the same geometric condition preventing the formation of singularities - 1/2-H\"older coherence of the vorticity direction - coupled with a suitable condition on a modified Kraichnan scale, and under a certain modulation assumption on evolution of the vorticity, leads to existence of 3D enstrophy cascade in physical scales of the flow.Comment: 15 pp; final version -- to appear in CM

    Electrostatic modification of infrared response in gated structures based on VO2

    Full text link
    We investigate the changes in the infrared response due to charge carriers introduced by electrostatic doping of the correlated insulator vanadium dioxide (VO2) integrated in the architecture of the field effect transistor. Accumulation of holes at the VO2 interface with the gate dielectric leads to an increase in infrared absorption. This phenomenon is observed only in the insulator-to-metal transition regime of VO2 with coexisting metallic and insulating regions. We postulate that doped holes lead to the growth of the metallic islands thereby promoting percolation, an effect that persists upon removal of the applied gate voltage.Comment: 14 pages, including 4 figure

    Underground Environment Aware MIMO Design Using Transmit and Receive Beamforming in Internet of Underground Things

    Get PDF
    In underground (UG) multiple-input and multiple-output (MIMO), the transmit beamforming is used to focus energy in the desired direction. There are three different paths in the underground soil medium through which the waves propagates to reach at the receiver. When the UG receiver receives a desired data stream only from the desired path, then the UG MIMO channel becomes three path (lateral, direct, and reflected) interference channel. Accordingly, the capacity region of the UG MIMO three path interference channel and degrees of freedom (multiplexing gain of this MIMO channel requires careful modeling). Therefore, expressions are required derived the degrees of freedom of the UG MIMO interference channel. The underground receiver needs to perfectly cancel the interference from the three different components of the EM-waves propagating in the soil medium. This concept is based upon reducing the interference the undesired components to minimum at UG receiver using the receive beamforming. In this paper, underground environment aware MIMO using transmit and receive beamforming has been developed. The optimal transmit beamforming and receive combin- ing vectors under minimal inter-component interference constraint are derived. It is shown that UG MIMO performs best when all three component of the wireless UG channel are leveraged for beamforming. The environment aware UG MIMO technique leads to three-fold performance improvements and paves the wave for design and development of next generation sensor-guided irrigation systems in the field of digital agriculture

    The curvature of semidirect product groups associated with two-component Hunter-Saxton systems

    Full text link
    In this paper, we study two-component versions of the periodic Hunter-Saxton equation and its μ\mu-variant. Considering both equations as a geodesic flow on the semidirect product of the circle diffeomorphism group \Diff(\S) with a space of scalar functions on §\S we show that both equations are locally well-posed. The main result of the paper is that the sectional curvature associated with the 2HS is constant and positive and that 2μ\muHS allows for a large subspace of positive sectional curvature. The issues of this paper are related to some of the results for 2CH and 2DP presented in [J. Escher, M. Kohlmann, and J. Lenells, J. Geom. Phys. 61 (2011), 436-452].Comment: 19 page

    EIS/Hinode observations of Doppler flow seen through the 40 arcsec wide slit

    Get PDF
    The Extreme ultraviolet Imaging Spectrometer (EIS) on board Hinode is the first solar telescope to obtain wide slit spectral images that can be used for detecting Doppler flows in transition region and coronal lines on the Sun and to relate them to their surrounding small scale dynamics. We select EIS lines covering the temperature range 6x10^4 K to 2x10^6 K that give spectrally pure images of the Sun with the 40 arcsec slit. In these images Doppler shifts are seen as horizontal brightenings. Inside the image it is difficult to distinguish shifts from horizontal structures but emission beyond the image edge can be unambiguously identified as a line shift in several lines separated from others on their blue or red side by more than the width of the spectrometer slit (40 pixels). In the blue wing of He II, we find a large number of events with properties (size and lifetime) similar to the well-studied explosive events seen in the ultraviolet spectral range. Comparison with X-Ray Telescope (XRT) images shows many Doppler shift events at the footpoints of small X-ray loops. The most spectacular event observed showed a strong blue shift in transition region and lower corona lines from a small X-ray spot that lasted less than 7 min. The emission appears to be near a cool coronal loop connecting an X-ray bright point to an adjacent region of quiet Sun. The width of the emission implies a line-of-sight velocity of 220 km/s. In addition, we show an example of an Fe XV shift with a velocity about 120 km/s, coming from what looks like a narrow loop leg connecting a small X-ray brightening to a larger region of X-ray emission.Comment: 12 pages, 8 figures, to be published in Solar Physic

    On the optical properties of Ag^{+15} ion-beam irradiated TiO_{2} and SnO_{2} thin films

    Full text link
    The effects of 200-MeV Ag^{+15} ion irradiation on the optical properties of TiO_{2} and SnO_{2} thin films prepared by using the RF magnetron sputtering technique were investigated. These films were characterized by using UV-vis spectroscopy, and with increasing irradiation fluence, the transmittance for the TiO_{2} films was observed to increase systematically while that for SnO_{2} was observed to decrease. Absorption spectra of the irradiated samples showed minor changes in the indirect bandgap from 3.44 to 3.59 eV with increasing irradiation fluence for TiO_{2} while significant changes in the direct bandgap from 3.92 to 3.6 eV were observed for SnO_{2}. The observed modifications in the optical properties of both the TiO_{2} and the SnO_{2} systems with irradiation can be attributed to controlled structural disorder/defects in the system.Comment: 6 pages, ICAMD-201

    Collective magnetism at multiferroic vortex domain walls

    Full text link
    Topological defects have been playgrounds for many emergent phenomena in complex matter such as superfluids, liquid crystals, and early universe. Recently, vortex-like topological defects with six interlocked structural antiphase and ferroelectric domains merging into a vortex core were revealed in multiferroic hexagonal manganites. Numerous vortices are found to form an intriguing self-organized network. Thus, it is imperative to find out the magnetic nature of these vortices. Using cryogenic magnetic force microscopy, we discovered unprecedented alternating net moments at domain walls around vortices that can correlate over the entire vortex network in hexagonal ErMnO3 The collective nature of domain wall magnetism originates from the uncompensated Er3+ moments and the correlated organization of the vortex network. Furthermore, our proposed model indicates a fascinating phenomenon of field-controllable spin chirality. Our results demonstrate a new route to achieving magnetoelectric coupling at domain walls in single-phase multiferroics, which may be harnessed for nanoscale multifunctional devices.Comment: 18 pages, 10 figure

    Direct reaction measurements with a 132Sn radioactive ion beam

    Full text link
    The (d,p) neutron transfer and (d,d) elastic scattering reactions were measured in inverse kinematics using a radioactive ion beam of 132Sn at 630 MeV. The elastic scattering data were taken in a region where Rutherford scattering dominated the reaction, and nuclear effects account for less than 8% of the cross section. The magnitude of the nuclear effects was found to be independent of the optical potential used, allowing the transfer data to be normalized in a reliable manner. The neutron-transfer reaction populated a previously unmeasured state at 1363 keV, which is most likely the single-particle 3p1/2 state expected above the N=82 shell closure. The data were analyzed using finite range adiabatic wave calculations and the results compared with the previous analysis using the distorted wave Born approximation. Angular distributions for the ground and first excited states are consistent with the previous tentative spin and parity assignments. Spectroscopic factors extracted from the differential cross sections are similar to those found for the one neutron states beyond the benchmark doubly-magic nucleus 208Pb.Comment: 22 pages, 7 figure
    • …
    corecore