732 research outputs found
Extra Dimensions at the Weak Scale and Deviations from Newtonian Gravity
We consider theories in which the Standard Model gauge fields propagate in
extra dimensions whose size is around the electroweak scale. The Standard Model
quarks and leptons may either be localized to a brane or propagate in the bulk.
This class of theories includes models of Scherk-Schwarz supersymmetry
breaking and universal extra dimensions. We consider the problem of stabilizing
the volume of the extra dimensions. We find that for a large class of
stabilization mechanisms the field which corresponds to fluctuations of the
volume remains light even after stabilization, and has a mass in the
eV range. In particular this is the case if stabilization does not involve
dynamics at scales larger than the cutoff of the higher dimensional Standard
Model, and if the effective theory below the compactification scale is four
dimensional. The mass of this field is protected against large radiative
corrections by the general covariance of the higher dimensional theory and by
the weakness of its couplings, which are Planck suppressed. Its couplings to
matter mediate forces whose strength is comparable to that of gravity and which
can give rise to potentially observable deviations from Newton's Law at
sub-millimeter distances. Current experiments investigating short distance
gravity can probe extra dimensions too small to be accessible to current
collider experiments. In particular for a single extra dimension stabilized by
the Casimir energy of the Standard Model fields compactification radii as small
as 5 inverse TeV are accessible to current sub-millimeter gravity experiments.Comment: Minor corrections, conclusions unchanged. References adde
Neutrino Telescopes as a Direct Probe of Supersymmetry Breaking
We consider supersymmetric models where the scale of supersymmetry breaking
lies between 5 GeV and 5 GeV. In this class of
theories, which includes models of gauge mediated supersymmetry breaking, the
lightest supersymmetric particle is the gravitino. The next to lightest
supersymmetric particle is typically a long lived charged slepton with a
lifetime between a microsecond and a second, depending on its mass. Collisions
of high energy neutrinos with nucleons in the earth can result in the
production of a pair of these sleptons. Their very high boost means they
typically decay outside the earth. We investigate the production of these
particles by the diffuse flux of high energy neutrinos, and the potential for
their observation in large ice or water Cerenkov detectors. The relatively
small cross-section for the production of supersymmetric particles is partially
compensated for by the very long range of heavy particles. The signal in the
detector consists of two parallel charged tracks emerging from the earth about
100 meters apart, with very little background. A detailed calculation using the
Waxman-Bahcall limit on the neutrino flux and realistic spectra shows that
km experiments could see as many as 4 events a year. We conclude that
neutrino telescopes will complement collider searches in the determination of
the supersymmetry breaking scale, and may even give the first evidence for
supersymmetry at the weak scale.Comment: 4 pages, 3 figure
The GUT Scale and Superpartner Masses from Anomaly Mediated Supersymmetry Breaking
We consider models of anomaly-mediated supersymmetry breaking (AMSB) in which
the grand unification (GUT) scale is determined by the vacuum expectation value
of a chiral superfield. If the anomaly-mediated contributions to the potential
are balanced by gravitational-strength interactions, we find a
model-independent prediction for the GUT scale of order . The GUT threshold also affects superpartner masses, and can easily
give rise to realistic predictions if the GUT gauge group is asymptotically
free. We give an explicit example of a model with these features, in which the
doublet-triplet splitting problem is solved. The resulting superpartner
spectrum is very different from that of previously considered AMSB models, with
gaugino masses typically unifying at the GUT scale.Comment: 17 page
Supersymmetry Breaking in Warped Geometry
We examine the soft supersymmetry breaking parameters in supersymmetric
theories on a slice of AdS_5 which generate the hierarchical Yukawa couplings
by dynamically localizing the bulk matter fields in extra dimension. Such
models can be regarded as the AdS dual of the recently studied 4-dimensional
models which contain a supersymmetric CFT to generate the hierarchical Yukawa
couplings. In such models, if supersymmetry breaking is mediated by the bulk
radion superfield and/or some brane chiral superfields, potentially dangerous
flavor-violating soft parameters can be naturally suppressed, thereby avoiding
the SUSY flavor problem. We present some models of radion-dominated
supersymmetry breaking which yield a highly predictive form of soft parameters
in this framework.Comment: 17 pages, no figures, uses JHEP clas
CMB Signals of Neutrino Mass Generation
We propose signals in the cosmic microwave background to probe the type and
spectrum of neutrino masses. In theories that have spontaneous breaking of
approximate lepton flavor symmetries at or below the weak scale, light
pseudo-Goldstone bosons recouple to the cosmic neutrinos after nucleosynthesis
and affect the acoustic oscillations of the electron-photon fluid during the eV
era. Deviations from the Standard Model are predicted for both the total energy
density in radiation during this epoch, \Delta N_nu, and for the multipole of
the n'th CMB peak at large n, \Delta l_n. The latter signal is difficult to
reproduce other than by scattering of the known neutrinos, and is therefore an
ideal test of our class of theories. In many models, the large shift, \Delta
l_n \approx 8 n_S, depends on the number of neutrino species that scatter via
the pseudo-Goldstone boson interaction. This interaction is proportional to the
neutrino masses, so that the signal reflects the neutrino spectrum. The
prediction for \Delta N_nu is highly model dependent, but can be accurately
computed within any given model. It is very sensitive to the number of
pseudo-Goldstone bosons, and therefore to the underlying symmetries of the
leptons, and is typically in the region of 0.03 < \Delta N_nu < 1. This signal
is significantly larger for Majorana neutrinos than for Dirac neutrinos, and,
like the scattering signal, varies as the spectrum of neutrinos is changed from
hierarchical to inverse hierarchical to degenerate.Comment: 40 pages, 4 figure
Abelian D-terms and the superpartner spectrum of anomaly-mediated supersymmetry breaking
We address the tachyonic slepton problem of anomaly mediated supersymmetry
breaking using abelian D-terms. We demonstrate that the most general extra U(1)
symmetry that does not disrupt gauge coupling unification has a large set of
possible charges that solves the problem. It is shown that previous studies in
this direction that added both an extra hypercharge D-term and another D-term
induced by B-L symmetry (or similar) can be mapped into a single D-term of the
general ancillary U(1)_a. The U(1)_a formalism enables identifying the sign of
squark mass corrections which leads to an upper bound of the entire
superpartner spectrum given knowledge of just one superpartner mass.Comment: 10 pages, 2 figures, [v2] reference added, [v3] Eq. (9) corrected,
results unaffected, [v4] version to be published in Phys. Rev. D, expanded
parameter space for figures to match tex
The Fayet-Iliopoulos D-term and its renormalisation in the MSSM
We consider the renormalisation of the Fayet-Iliopoulos D-term in a
softly-broken supersymmetric gauge theory with a non-simple gauge group
containing an abelian factor, and present the associated beta-function through
three loops. We also include in an appendix the result for several abelian
factors. We specialise to the case of the minimal supersymmetric standard model
(MSSM), and investigate the behaviour of the Fayet-Iliopoulos coupling for
various boundary conditions at the unification scale. We focus particularly on
the case of non-standard soft supersymmetry breaking couplings, for which the
Fayet-Iliopoulos coupling evolves significantly between the unification scale
and the weak scale.Comment: 18 pages, Revtex, 2 figures. Expanded version including general
results for gauge groups with several abelian factors. Minor typos correcte
Superfield description of 5D supergravity on general warped geometry
We provide a systematic and practical method of deriving 5D supergravity
action described by 4D superfields on a general warped geometry, including a
non-BPS background. Our method is based on the superconformal formulation of 5D
supergravity, but is easy to handle thanks to the superfield formalism. We
identify the radion superfield in the language of 5D superconformal gravity,
and clarify its appearance in the action. We also discuss SUSY breaking effects
induced by a deformed geometry due to the backreaction of the radius
stabilizer.Comment: 25 pages, no figures, LaTeX, final version to appear in JHE
Sparticle spectrum and constraints in anomaly mediated supersymmetry breaking models
We study in detail the particle spectrum in anomaly mediated supersymmetry
breaking models in which supersymmetry breaking terms are induced by the
super-Weyl anomaly. We investigate the minimal anomaly mediated supersymmetry
breaking models, gaugino assisted supersymmetry breaking models, as well as
models with additional residual nondecoupling D-term contributions due to an
extra U(1) gauge symmetry at a high energy scale. We derive sum rules for the
sparticle masses in these models which can help in differentiating between
them. We also obtain the sparticle spectrum numerically, and compare and
contrast the results so obtained for the different types of anomaly mediated
supersymmetry breaking models.Comment: LaTeX, 20 pages, 6 figures. A few comments and a reference added;
typos corrected; version published in Phys. Rev.
Electroweak Symmetry Breaking via UV Insensitive Anomaly Mediation
Anomaly mediation solves the supersymmetric flavor and CP problems. This is
because the superconformal anomaly dictates that supersymmetry breaking is
transmitted through nearly flavor-blind infrared physics that is highly
predictive and UV insensitive. Slepton mass squareds, however, are predicted to
be negative. This can be solved by adding D-terms for U(1)_Y and U(1)_{B-L}
while retaining the UV insensitivity. In this paper we consider electroweak
symmetry breaking via UV insensitive anomaly mediation in several models. For
the MSSM we find a stable vacuum when tanbeta < 1, but in this region the top
Yukawa coupling blows up only slightly above the supersymmetry breaking scale.
For the NMSSM, we find a stable electroweak breaking vacuum but with a chargino
that is too light. Replacing the cubic singlet term in the NMSSM superpotential
with a term linear in the singlet we find a stable vacuum and viable spectrum.
Most of the parameter region with correct vacua requires a large superpotential
coupling, precisely what is expected in the ``Fat Higgs'' model in which the
superpotential is generated dynamically. We have therefore found the first
viable UV complete, UV insensitive supersymmetry breaking model that solves the
flavor and CP problems automatically: the Fat Higgs model with UV insensitive
anomaly mediation. Moreover, the cosmological gravitino problem is naturally
solved, opening up the possibility of realistic thermal leptogenesis.Comment: 27 pages, 3 figures, 1 tabl
- âŠ