24 research outputs found

    Cell adaptation of the extremophilic red microalga Galdieria sulphuraria to the availability of carbon sources.

    Full text link
    peer reviewedGlobal energy demand and fossil fuels impact on climate can be partially managed by an increase in the use of biofuels for transports and industries. Biodiesel production is generally preceded by a transesterification process of the green biomass triacylglycerols that generates large amounts of glycerol as a by-product. In this study, the extremophilic red microalga Galdieria sulphuraria 074W was cultivated in heterotrophy. The microalgal growth parameters and biomass composition were compared when grown on an equivalent molar concentration of carbon of either glucose or glycerol as unique carbon source. The maximal biomass reached in these two conditions was not significantly different (∼2.5 g.L-1). Fatty acid profile, protein and storage carbohydrate contents were also statistically similar, irrespectively of the metabolized carbon source. We also observed that the pigment content of G. sulphuraria cells decreased during heterotrophic growth compared to photoautotrophic cultivated cells, and that this diminution was more important in the presence of glucose than glycerol: cells were yellowish in the presence of glucose and green in the presence of glycerol. The pigmentation was restored when glucose was totally consumed in the medium, suggesting that the presence of glucose repressed pigment synthesis. Based on this observation, a transcriptome analysis was performed in order to better understand the mechanisms involved in the loss of color mediated by darkness and by glucose in G. sulphuraria. Three conditions were analyzed: heterotrophy with glycerol or glucose and phototrophy. This allowed us to understand the transcriptional response of cells to light and dark environments both at the nuclear and chloroplast levels, and to show that transcription of gene families, acquired by horizontal gene transfer, such as sugar, amino acid, or acetate transporters, were involved in the response to the availability of different (in)organic sources

    Retracing Storage Polysaccharide Evolution in Stramenopila

    Full text link
    Eukaryotes most often synthesize storage polysaccharides in the cytosol or vacuoles in the form of either alpha (glycogen/starch)- or beta-glucosidic (chrysolaminarins and paramylon) linked glucan polymers. In both cases, the glucose can be packed either in water-soluble (glycogen and chrysolaminarins) or solid crystalline (starch and paramylon) forms with different impacts, respectively, on the osmotic pressure, the glucose accessibility, and the amounts stored. Glycogen or starch accumulation appears universal in all free-living unikonts (metazoa, fungi, amoebozoa, etc.), as well as Archaeplastida and alveolata, while other lineages offer a more complex picture featuring both alpha- and beta-glucan accumulators. We now infer the distribution of these polymers in stramenopiles through the bioinformatic detection of their suspected metabolic pathways. Detailed phylogenetic analysis of key enzymes of these pathways correlated to the phylogeny of Stramenopila enables us to retrace the evolution of storage polysaccharide metabolism in this diverse group of organisms. The possible ancestral nature of glycogen metabolism in eukaryotes and the underlying source of its replacement by beta-glucans are discussed

    A Cell Wall Proteome and Targeted Cell Wall Analyses Provide Novel Information on Hemicellulose Metabolism in Flax

    Get PDF
    International audienceExperimentally-generated (nanoLC-MS/MS) proteomic analyses of four different flax organs/tissues (inner-stem, outer-stem, leaves and roots) enriched in proteins from 3 different sub-compartments (soluble-, membrane-, and cell wall-proteins) was combined with publically available data on flax seed and whole-stem proteins to generate a flax protein database containing 2996 nonredundant total proteins. Subsequent multiple analyses (MapMan, CAZy, WallProtDB and expert curation) of this database were then used to identify a flax cell wall proteome consisting of 456 nonredundant proteins localized in the cell wall and/or associated with cell wall biosynthesis, remodeling and other cell wall related processes. Examination of the proteins present in different flax organs/tissues provided a detailed overview of cell wall metabolism and highlighted the importance of hemicellulose and pectin re-modeling in stem tissues. Phylogenetic analyses of proteins in the cell wall proteome revealed an important paralogy in the class IIIA xyloglucan endo-transglycosy-lase/hydrolase (XTH) family associated with xyloglucan endo-hydrolase activity. Immunolocalisation, FT-IR microspectroscopy, and en-zymatic fingerprinting indicated that flax fiber primary/S1 cell walls contained xyloglucans with typical substituted side chains as well as glucuronoxylans in much lower quantities. These results suggest a likely central role of xyloglucans and endotransglucosylase/hydrolase activity in flax fiber formation and cell wall remodeling processes. Molecular & Cellula

    Transcriptomics and proteomics approach to study the roles of the environment and genotype on parietal metabolism in the flax

    No full text
    Le lin (Linum usitatissimum L.) est cultivé pour ses fibres riches en cellulose utilisées dans l’industrie textile et pour l’élaboration des matériaux composites. La « qualité » des fibres dépend, en partie, de la structure de la paroi cellulaire et nous avons donc essayé de mieux comprendre les différents facteurs pouvant impacter sur la composition des parois cellulaires chez le lin. Dans un premier temps nous avons validé un nouvel support de microarray de type Nimblegen en passant d’un système à base d’oligonucléotides courts (25-mer) à une version avec oligonucléotides longs (60-mer) pour des analyses de transcriptomique. Ensuite une étude protéomique sur plusieurs organes végétatifs nous a permis d’identifier 1242 protéines non-redondantes dont 410 sont associées au métabolisme pariétal. En parallèle nous avons démontrés la présence des hémicellulose de type xyloglucane dans les parois des fibres de lin et mis en évidence une importante paralogie de la famille IIIA des XTHs (xyloglucan endo-transglycosylase/hydrolase) potentiellement impliqué dans la formation/structuration de la paroi des fibres de lin. Puis, une comparaison transcriptomique et protéomique entre différentes variétés de lin (fibre printemps, fibre hiver, huile hiver) cultivées au champ sur 2 années consécutives a permis d’identifier 659 gènes différentiellement exprimés (DEGs) au niveau variétale, et 1571 DEGs au niveau environnemental. Un nombre non-négligeable de ces gènes est impliqué dans le métabolisme pariétal permettant ainsi de fournir les premiers indices expliquant le lien entre variété et qualité. Cette dernière étude a également souligné l’importance potentielle de la protéine XTH dans le métabolisme pariétal du lin. Le rôle de l’environnement sur le métabolisme pariétale était explorée d’avantage dans une étude visant à disséquer l’impact d’un stress hydrique sur les transcriptomes de 3 organes végétatifs (tige, feuille, racine). Les analyses préliminaires ont identifié un nombre important de DEGs impliqués dans la biosynthèse et le remodelage de plusieurs polymères pariétaux.Flax (Linum usitatissimum L.) is grown for its cellulose-rich bast fibers used in the textile industry and for reinforcing composite materials. Fiber “quality” depends partly on the structure of the cell wall and we have therefore tried to obtain a better understanding of the different factors that can influence the structure of flax cell walls. We firstly confirmed the use of a new Nimblegen microarray changing from a system based on short (25-mer) oligonucleotides to a system based on long oligonucleotides (60 mers). A proteomics approach was then used and allowed us to identify 1,242 non-redundant proteins of which 410 could be related to cell wall metabolism. In parallel we demonstrated the presence of xyloglucan hemicelluloses in flax fiber cell walls and identified an important paralogy in the IIIA XTH (xyloglucan endo-transglycosylase/hydrolase) family potentially implicated in the formation/structuration of the flax fiber cell wall. Then a transcriptomic and proteomic comparison between different field-grown flax varieties (spring fiber, winter fiber, winter oil) over 2 consecutive years allowed us to identify 659 differentially-expressed genes (DEGs) at the variety level, and 1,571 genes at the environmental level. A non-negligible number of these genes is involved in cell wall metabolism thereby providing some initial clues allowing a link to be made between variety and quality. This study also underlined the potential importance of the XTH protein in flax cell wall metabolism. The role of the environment on cell wall metabolism was further explored in a study aiming to dissect the impact of drought stress on the transcriptomes of 3 vegetative organs (stem, leaf, root). Preliminary analyses identified an important number of DEGs involved in the biosynthesis and remodeling of several cell wall polymers

    Table_2_Cell adaptation of the extremophilic red microalga Galdieria sulphuraria to the availability of carbon sources.XLSX

    No full text
    Global energy demand and fossil fuels impact on climate can be partially managed by an increase in the use of biofuels for transports and industries. Biodiesel production is generally preceded by a transesterification process of the green biomass triacylglycerols that generates large amounts of glycerol as a by-product. In this study, the extremophilic red microalga Galdieria sulphuraria 074W was cultivated in heterotrophy. The microalgal growth parameters and biomass composition were compared when grown on an equivalent molar concentration of carbon of either glucose or glycerol as unique carbon source. The maximal biomass reached in these two conditions was not significantly different (∼2.5 g.L–1). Fatty acid profile, protein and storage carbohydrate contents were also statistically similar, irrespectively of the metabolized carbon source. We also observed that the pigment content of G. sulphuraria cells decreased during heterotrophic growth compared to photoautotrophic cultivated cells, and that this diminution was more important in the presence of glucose than glycerol: cells were yellowish in the presence of glucose and green in the presence of glycerol. The pigmentation was restored when glucose was totally consumed in the medium, suggesting that the presence of glucose repressed pigment synthesis. Based on this observation, a transcriptome analysis was performed in order to better understand the mechanisms involved in the loss of color mediated by darkness and by glucose in G. sulphuraria. Three conditions were analyzed: heterotrophy with glycerol or glucose and phototrophy. This allowed us to understand the transcriptional response of cells to light and dark environments both at the nuclear and chloroplast levels, and to show that transcription of gene families, acquired by horizontal gene transfer, such as sugar, amino acid, or acetate transporters, were involved in the response to the availability of different (in)organic sources.</p

    Image_1_Cell adaptation of the extremophilic red microalga Galdieria sulphuraria to the availability of carbon sources.pdf

    No full text
    Global energy demand and fossil fuels impact on climate can be partially managed by an increase in the use of biofuels for transports and industries. Biodiesel production is generally preceded by a transesterification process of the green biomass triacylglycerols that generates large amounts of glycerol as a by-product. In this study, the extremophilic red microalga Galdieria sulphuraria 074W was cultivated in heterotrophy. The microalgal growth parameters and biomass composition were compared when grown on an equivalent molar concentration of carbon of either glucose or glycerol as unique carbon source. The maximal biomass reached in these two conditions was not significantly different (∼2.5 g.L–1). Fatty acid profile, protein and storage carbohydrate contents were also statistically similar, irrespectively of the metabolized carbon source. We also observed that the pigment content of G. sulphuraria cells decreased during heterotrophic growth compared to photoautotrophic cultivated cells, and that this diminution was more important in the presence of glucose than glycerol: cells were yellowish in the presence of glucose and green in the presence of glycerol. The pigmentation was restored when glucose was totally consumed in the medium, suggesting that the presence of glucose repressed pigment synthesis. Based on this observation, a transcriptome analysis was performed in order to better understand the mechanisms involved in the loss of color mediated by darkness and by glucose in G. sulphuraria. Three conditions were analyzed: heterotrophy with glycerol or glucose and phototrophy. This allowed us to understand the transcriptional response of cells to light and dark environments both at the nuclear and chloroplast levels, and to show that transcription of gene families, acquired by horizontal gene transfer, such as sugar, amino acid, or acetate transporters, were involved in the response to the availability of different (in)organic sources.</p

    Table_1_Cell adaptation of the extremophilic red microalga Galdieria sulphuraria to the availability of carbon sources.DOCX

    No full text
    Global energy demand and fossil fuels impact on climate can be partially managed by an increase in the use of biofuels for transports and industries. Biodiesel production is generally preceded by a transesterification process of the green biomass triacylglycerols that generates large amounts of glycerol as a by-product. In this study, the extremophilic red microalga Galdieria sulphuraria 074W was cultivated in heterotrophy. The microalgal growth parameters and biomass composition were compared when grown on an equivalent molar concentration of carbon of either glucose or glycerol as unique carbon source. The maximal biomass reached in these two conditions was not significantly different (∼2.5 g.L–1). Fatty acid profile, protein and storage carbohydrate contents were also statistically similar, irrespectively of the metabolized carbon source. We also observed that the pigment content of G. sulphuraria cells decreased during heterotrophic growth compared to photoautotrophic cultivated cells, and that this diminution was more important in the presence of glucose than glycerol: cells were yellowish in the presence of glucose and green in the presence of glycerol. The pigmentation was restored when glucose was totally consumed in the medium, suggesting that the presence of glucose repressed pigment synthesis. Based on this observation, a transcriptome analysis was performed in order to better understand the mechanisms involved in the loss of color mediated by darkness and by glucose in G. sulphuraria. Three conditions were analyzed: heterotrophy with glycerol or glucose and phototrophy. This allowed us to understand the transcriptional response of cells to light and dark environments both at the nuclear and chloroplast levels, and to show that transcription of gene families, acquired by horizontal gene transfer, such as sugar, amino acid, or acetate transporters, were involved in the response to the availability of different (in)organic sources.</p

    Table_6_Cell adaptation of the extremophilic red microalga Galdieria sulphuraria to the availability of carbon sources.XLSX

    No full text
    Global energy demand and fossil fuels impact on climate can be partially managed by an increase in the use of biofuels for transports and industries. Biodiesel production is generally preceded by a transesterification process of the green biomass triacylglycerols that generates large amounts of glycerol as a by-product. In this study, the extremophilic red microalga Galdieria sulphuraria 074W was cultivated in heterotrophy. The microalgal growth parameters and biomass composition were compared when grown on an equivalent molar concentration of carbon of either glucose or glycerol as unique carbon source. The maximal biomass reached in these two conditions was not significantly different (∼2.5 g.L–1). Fatty acid profile, protein and storage carbohydrate contents were also statistically similar, irrespectively of the metabolized carbon source. We also observed that the pigment content of G. sulphuraria cells decreased during heterotrophic growth compared to photoautotrophic cultivated cells, and that this diminution was more important in the presence of glucose than glycerol: cells were yellowish in the presence of glucose and green in the presence of glycerol. The pigmentation was restored when glucose was totally consumed in the medium, suggesting that the presence of glucose repressed pigment synthesis. Based on this observation, a transcriptome analysis was performed in order to better understand the mechanisms involved in the loss of color mediated by darkness and by glucose in G. sulphuraria. Three conditions were analyzed: heterotrophy with glycerol or glucose and phototrophy. This allowed us to understand the transcriptional response of cells to light and dark environments both at the nuclear and chloroplast levels, and to show that transcription of gene families, acquired by horizontal gene transfer, such as sugar, amino acid, or acetate transporters, were involved in the response to the availability of different (in)organic sources.</p
    corecore