469 research outputs found

    Optimizing a PCR protocol for cpn60-based microbiome profiling of samples variously contaminated with host genomic DNA.

    Get PDF
    The current recommended protocol for chaperonin-60 (cpn60) universal target based microbiome profiling includes universal PCR of microbiome samples across an annealing temperature gradient to maximize the diversity of sequences amplified. However, the value of including this gradient approach has not been formally evaluated since the optimization of a modified universal PCR primer cocktail for cpn60 PCR. PCR conditions that maximize representation of the microbiome while minimizing PCR-associated distortion of the community structure, especially in samples containing large amounts of host genomic DNA are critical. The goal of this study was to measure the effects of PCR annealing temperature and the ratio of host to bacterial DNA on the outcome of microbiota analysis, using pig microbiota as a model environment.Six samples were chosen with an anticipated range of ratios of pig to bacterial genomic DNA, and universal cpn60 PCR amplification with an annealing temperature gradient was used to create libraries for pyrosequencing, resulting in 426,477 sequences from the six samples. The sequences obtained were classified as target (cpn60) or non-target based on the percent identity of their closest match to the cpnDB reference database, and target sequences were further processed to create microbiome profiles for each sample at each annealing temperature. Annealing temperature affected the amount of PCR product generated, with more product generated at higher temperatures. Samples containing proportionally more host genomic DNA yielded more non-target reads, especially at lower annealing temperatures. However, microbiome composition for each sample across the annealing temperature gradient remained consistent at both the phylum and operational taxonomic unit levels. Although some microbial sequences were detected at only one annealing temperature, these sequences accounted for a minority of the total microbiome.These results indicate that PCR annealing temperature does have an affect on cpn60 based microbiome profiles, but that most of the differences are due to differences in detection of low abundance sequences. Higher annealing temperatures resulted in larger amounts of PCR product and lower amounts of non-target sequence amplification, especially in samples containing proportionally large amounts of host DNA. Taken together these results provide important information to guide decisions about experimental design for cpn60 based microbiome studies

    A New Model of Chemical Bonding in Ionic Melts

    Full text link
    We developed a new physical model to predict macroscopic properties of inorganic molten systems using a realistic description of inter-atomic interactions. Unlike the conventional approach, which tends to overestimate viscosity by several times, our systems consist of a set of ions with an admixture of neutral atoms. The neutral atom subsystem is a consequence of the covalent/ionic state reduction, occurring in the liquid phase. Comparison of the calculated macroscopic properties (shear viscosity and self-diffusion constants) with the experiment demonstrates good performance of our model. The presented approach is inspired by a significant degree of covalent interaction between the alkali and chlorine atoms, predicted by the coupled cluster theory

    Evolution of higher torque in Campylobacter-type bacterial flagellar motors

    Get PDF
    Understanding the evolution of molecular machines underpins our understanding of the development of life on earth. A well-studied case are bacterial flagellar motors that spin helical propellers for bacterial motility. Diverse motors produce different torques, but how this diversity evolved remains unknown. To gain insights into evolution of the high-torque ε-proteobacterial motor exemplified by the Campylobacter jejuni motor, we inferred ancestral states by combining phylogenetics, electron cryotomography, and motility assays to characterize motors from Wolinella succinogenes, Arcobacter butzleri and Bdellovibrio bacteriovorus. Observation of ~12 stator complexes in many proteobacteria, yet ~17 in ε-proteobacteria suggest a “quantum leap” evolutionary event. Campylobacter-type motors have high stator occupancy in wider rings of additional stator complexes that are scaffolded by large proteinaceous periplasmic rings. We propose a model for motor evolution wherein independent inner- and outer-membrane structures fused to form a scaffold for additional stator complexes. Significantly, inner- and outer-membrane associated structures have evolved independently multiple times, suggesting that evolution of such structures is facile and poised the ε-proteobacteria to fuse them to form the high-torque Campylobacter-type motor

    Characterization of the fecal microbiota of pigs before and after inoculation with "Brachyspira hampsonii".

    No full text
    Brachyspira hampsonii causes disease indistinguishable from swine dysentery, and the structure of the intestinal microbiome likely plays a role in determining susceptibility of individual pigs to infection and development of clinical disease. The objectives of the current study were to determine if the pre-inoculation fecal microbiota differed between inoculated pigs that did (INOC MH) or did not (INOC non-MH) develop mucohaemorrhagic diarrhea following challenge with B. hampsonii , and to quantify changes in the structure of the microbiome following development of clinical disease. Fecal microbiota profiles were generated based on amplification and sequencing of the cpn60 universal target sequence from 89 samples from 18 pigs collected at -8, -5, -3 and 0 days post-inoculation, and at termination. No significant differences in richness, diversity or taxonomic composition distinguished the pre-inoculation microbiomes of INOC MH and INOC non-MH pigs. However, the development of bloody diarrhea in inoculated pigs was associated with perturbation of the microbiota relative to INOC non-MH or sham-inoculated control pigs. Specifically, the fecal microbiota of INOC MH pigs was less dense (fewer total 16S rRNA copies per gram of feces), and had a lower Bacteroidetes:Firmicutes ratio. Further investigation of the potential long-term effects of Brachyspira disease on intestinal health and performance is warranted

    mPUMA: a computational approach to microbiota analysis by de novo assembly of operational taxonomic units based on protein-coding barcode sequences.

    No full text
    BACKGROUND: Formation of operational taxonomic units (OTU) is a common approach to data aggregation in microbial ecology studies based on amplification and sequencing of individual gene targets. The de novo assembly of OTU sequences has been recently demonstrated as an alternative to widely used clustering methods, providing robust information from experimental data alone, without any reliance on an external reference database. RESULTS: Here we introduce mPUMA (microbial Profiling Using Metagenomic Assembly, http://mpuma.sourceforge.net), a software package for identification and analysis of protein-coding barcode sequence data. It was developed originally for Cpn60 universal target sequences (also known as GroEL or Hsp60). Using an unattended process that is independent of external reference sequences, mPUMA forms OTUs by DNA sequence assembly and is capable of tracking OTU abundance. mPUMA processes microbial profiles both in terms of the direct DNA sequence as well as in the translated amino acid sequence for protein coding barcodes. By forming OTUs and calculating abundance through an assembly approach, mPUMA is capable of generating inputs for several popular microbiota analysis tools. Using SFF data from sequencing of a synthetic community of Cpn60 sequences derived from the human vaginal microbiome, we demonstrate that mPUMA can faithfully reconstruct all expected OTU sequences and produce compositional profiles consistent with actual community structure. CONCLUSIONS: mPUMA enables analysis of microbial communities while empowering the discovery of novel organisms through OTU assembly

    Characterization of the upper respiratory tract microbiomes of patients with pandemic H1N1 influenza.

    Get PDF
    The upper respiratory tract microbiome has an important role in respiratory health. Influenza A is a common viral infection that challenges that health, and a well-recognized sequela is bacterial pneumonia. Given this connection, we sought to characterize the upper respiratory tract microbiota of individuals suffering from the pandemic H1N1 influenza A outbreak of 2009 and determine if microbiome profiles could be correlated with patient characteristics. We determined the microbial profiles of 65 samples from H1N1 patients by cpn60 universal target amplification and sequencing. Profiles were examined at the phylum and nearest neighbor species levels using the characteristics of patient gender, age, originating health authority, sample type and designation (STAT/non-STAT). At the phylum level, Actinobacteria-, Firmicutes- and Proteobacteria-dominated microbiomes were observed, with none of the patient characteristics showing significant profile composition differences. At the nearest neighbor species level, the upper respiratory tract microbiomes were composed of 13-20 species and showed a trend towards increasing diversity with patient age. Interestingly, at an individual level, most patients had one to three organisms dominant in their microbiota. A limited number of discrete microbiome profiles were observed, shared among influenza patients regardless of patient status variables. To assess the validity of analyses derived from sequence read abundance, several bacterial species were quantified by quantitative PCR and compared to the abundance of cpn60 sequence read counts obtained in the study. A strong positive correlation between read abundance and absolute bacterial quantification was observed. This study represents the first examination of the upper respiratory tract microbiome using a target other than the 16S rRNA gene and to our knowledge, the first thorough examination of this microbiome during a viral infection

    Photodissociation Dynamics of Molecular Fluorine in an Argon Matrix Induced by Ultrashort Laser Pulses

    Get PDF
    The electronic excitation induced by ultrashort laser pulses and the subsequent photodissociation dynamics of molecular fluorine in an argon matrix are studied. The interactions of photofragments and host atoms are modeled using a Diatomics-In-Molecule Hamiltonian. Two types of methods are compared: Quantum-classical simulations where the nuclei are treated classically, with surface-hopping algorithms to describe either radiative or non-radiative transitions between different electronic states. Fully quantum-mechanical simulations, but for a model system of reduced dimensionality, in which the two most essential degrees of freedom are considered. Some of the main results are: The sequential energy transfer events from the photoexcited F2 into the lattice modes are such that the ``reduced dimensionality'' model is valid for the first 200 fs. This, in turn, allows us to use the quantum results to investigate the details of the excitation process with short laser pulses. Thus, it also serves as a reference for the quantum-classical ``surface hopping'' model of the excitation process. Moreover, it supports the validity of a laser pulse control strategy developed on the basis of the ``reduced dimensionality'' model. Both in the quantum and quantum-classical simulations, the separation of the F atoms following photodissociation does not exceed 20 bohr. The cage exit mechanisms appear qualitatively similar in the two sets of simulations but quantum effects are quantitatively important. Nonlinear effects are important in determining the photoexcitation yield. In summary, this paper demonstrates that quantum-classical simulations combined with reduced dimensionality quantum calculations can be a powerful approach to the analysis and control of the dynamics of complex systems

    The flagellum in bacterial pathogens: For motility and a whole lot more.

    Get PDF
    The bacterial flagellum is an amazingly complex molecular machine with a diversity of roles in pathogenesis including reaching the optimal host site, colonization or invasion, maintenance at the infection site, and post-infection dispersal. Multi-megadalton flagellar motors self-assemble across the cell wall to form a reversible rotary motor that spins a helical propeller - the flagellum itself - to drive the motility of diverse bacterial pathogens. The flagellar motor responds to the chemoreceptor system to redirect swimming toward beneficial environments, thus enabling flagellated pathogens to seek out their site of infection. At their target site, additional roles of surface swimming and mechanosensing are mediated by flagella to trigger pathogenesis. Yet while these motility-related functions have long been recognized as virulence factors in bacteria, many bacteria have capitalized upon flagellar structure and function by adapting it to roles in other stages of the infection process. Once at their target site, the flagellum can assist adherence to surfaces, differentiation into biofilms, secretion of effector molecules, further penetration through tissue structures, or in activating phagocytosis to gain entry into eukaryotic cells. Next, upon onset of infection, flagellar expression must be adapted to deal with the host's immune system defenses, either by reduced or altered expression or by flagellar structural modification. Finally, after a successful growth phase on or inside a host, dispersal to new infection sites is often flagellar motility-mediated. Examining examples of all these processes from different bacterial pathogens, it quickly becomes clear that the flagellum is involved in bacterial pathogenesis for motility and a whole lot more. © 2015 Elsevier Ltd

    ІСТОРИЧНІ ВІХИ БОРОТЬБИ З ІНФЕКЦІЙНИМИ ХВОРОБАМИ НА ПІВДНІ УКРАЇНИ ТА ПЕРША КАФЕДРА ІНФЕКЦІЙНИХ ХВОРОБ

    Get PDF
    The history of the first Ukrainian Department of Infectious Diseases formation was describe. It was found in Odesa and achievements of the famous scientist who stood at the origins of this historic event by M.F. Hamaleya, H.M. Minkh, O.O. Mochutkovsky, V.A. Khavkin, D.K. Zabolotny, V.K. Stefansky. Briefly described figures of famous followers ‒ L.K. Korovytsky, H.A. Hreenberh, R.P. Naumov, V.P. Lipkovsky and others.Описано історію становлення першої в Україні кафедри інфекційних хвороб в Одесі, а також заслуги видатних вітчизняних вчених, які стояли біля витоків цієї історичної події ‒ М.Ф. Гамалії, Г.М. Мінха, О.О. Мочутковського, В.А. Хавкіна, Д.К. Заболотного, В.К. Стефанського. Стисло охарактеризовано постаті їх відомих послідовників ‒ Л.К. Коровицького, Г.О. Гринберга, Р.П. Наумової, В.П. Ліпковського та ін
    corecore