35 research outputs found

    Remediation of salt-affected soil by the addition of organic matter: an investigation into improving glutinous rice productivity

    Get PDF
    Soil salinity may limit plant growth and development, and cause yield loss in crop species. This study aimed at remediating saline soil using organic matter (OM) treatment, before the cultivation of RD6 rice (Oryza sativa L. spp. indica). Physiological and morphological characters of rice plants, as well as crop yield, were evaluated from salt-affected soil with varying levels of salinity. The chlorophyll a and total chlorophyll pigments of rice plants grown in salt-affected soil (2% salt level) with the application of OM were maintained better than in plants grown without OM treatment. The degree of reduced photosynthetic pigments in rice plants was dependent on the level of salt contamination. Pigment content was positively related to maximum quantum yield of PSII (Fv/Fm) and quantum efficiency of PSII (ΦPSII), leading to reduced net photosynthetic rate (Pn) and reduced total grain weight (TGW). Photosynthetic abilities, including chlorophyll a and total chlorophyll pigments and ΦPSII, in rice plants grown with OM treatment were greater than in those cultivated in soil without the OM treatment, especially in high salt levels (1-2% salt). The remediation of salt-affected soil in paddy fields using OM should be applied further, as an effective way of enhancing food crop productivity

    Phenotypic Variation for Root Distribution of IR64, KDML105 and KDML105 Mutant Rice Varieties in Water Deficit and Well-Watered Conditions

    Get PDF
    ABSTRACT Phenotypic variation for root distribution is associated with the ability of plants to acquire water and nutrients available at different soil strata. Rice production is known to be susceptible to water deficit stress (WS) because rice requires much water for cultivation. In this study, we explored natural variation of root distribution among IR64, KDML105 and KDML105 mutant lines (MT1, MT2, MT3) derived from gamma irradiation combined with ethyl methane sulfonate treatment. Plants were grown in a root basket and a root box system. We found that KDML105 had lower root to shoot ratio (27.49%) and less rooting depth (27.25%) compared to IR64. In the root box system, we found that WS decreased an average shoot biomass by 32.9%. The mutant lines maintained their shoot mass under WS while that of KDML105 was significantly reduced. Physiological analysis revealed that MT2 had the lowest evapotranspiration rate of 76.6%. In addition, MT2 and MT3 increased photosynthetic pigments under WS. KDML105 increased its rooting depth while MT1 and MT2 reduced rooting depth by 17.5% and 15.2%,respectively, under WS. Root distribution was associated with crown root number per tiller but not necessary with water use efficiency in our system. Keywords: Rice, Root, Root distribution, Water deficit, Mutant ric

    Field Screening of Sugarcane (Saccharum spp.) Mutant and Commercial Genotypes for Salt Tolerance

    Get PDF
    Growth and physiological attributes and sugar quality parameters are considered key criteria for screening sugarcane cultivars for salt tolerance. Maximum cane growth and yield were found in a positive check (‘K88-92’) as well as in cv. ‘(A3)AE1-18’ when subjected to salt affected soil. Percent reduction in Fv/Fm, quantum efficiency of PSII (ΦPSII) and water use efficiency (WUE) due to salt stress was considerably low in ‘K88-92’, ‘(A3)AE1-18’ and ‘KK3’ which was associated with very low salt-induced reduction in net photosynthetic rate and growth characters such as shoot length, number of internodes, and internodal length as well as yield traits. In addition, brix, polarlization, fiber, purity and commercial cane sugar (CCS) in ‘(A18)AE2-15’ and ‘(A3)AE1-18’ were well maintained under saline stress. By subjecting the data for various physiological, growth, yield and sugar quality parameters to the Ward’s cluster analysis ‘K88-92’ (positive check), ‘(A3)AE1-18’ and ‘KK3’ were identified as salt tolerant, whereas ‘(A11)AE1-114’ and ‘K97-32’ as salt sensitive

    Physiological, Morphological Changes and Storage Root Yield of Sweetpotato [Ipomoea batatas (L.) Lam.] under PEG-Induced Water Stress

    Get PDF
    Sweetpotato is an important tuberous root crop rich in nutrients such as vitamins and carbohydrates, and can grow well in arid regions with less water consuming crop. The aim of this research was to evaluate the storage root yields, physiological, biochemical and morphological traits in sweetpotato cv. ‘Japanese Yellow’ subjected to polyethylene glycol (PEG)-induced water deficit. At harvest (4 months after planting) the number of storage roots per plant and storage root fresh weight in sweetpotato treated with 5% PEG (-0.54 MPa) in nutrient solution of hydroponic culture declined by 20.0% and 47.4% compared to the control without PEG, respectively. Leaf area and leaf dry weight significantly decreased by 85.6% and 95.3%, respectively when exposed to water deficit stress. Sucrose content (114.7 mg g-1 dry weight; DW) in storage roots of sweetpotato grown under PEG-induced water deficit conditions was enriched by 2.2 fold of control (52.5 mg g-1 DW) and was greater than in storage roots derived from soil culture (70.3 mg g-1 DW). Total soluble sugar in the root and storage root tissues was enriched and may play a key role as osmotic adjustment (OA) in PEG-induced water stressed plants. Free proline and sucrose contents were also dominated in the leaf tissues to maintain the leaf osmotic potential in water stressed plants. In addition, chlorophyll degradation, chlorophyll fluorescence diminution and stomatal closure were found in plants grown under PEG-induced water deficit conditions, leading to reduction in net photosynthetic rate (Pn) and subsequently lesser amounts of glucose and fructose contents in the leaf tissues. Sucrose and free proline in the roots of sweetpotato play a key role as major osmotic adjustment when subjected to PEG-induced water deficit condition. Basic knowledge gained from this research will further be investigated the drought defense mechanism in sweetpotato via osmoregulation system

    Development of Arbuscular Mycorrhizal Fungi-Organic Fertilizer Pellets Encapsulated with Alginate Film

    Get PDF
    A novel formulation consisting of arbuscular mycorrhizal fungi (AMF) spores mixed with sterilized organic fertilizer (AMF-F) encapsulated by an insoluble calcium alginate film was developed to enhance AMF efficacy and stability. The hardness of the pellets increased from 7–8 N to approximately 80 N by increasing the alginate concentration of the coating film from 1 to 3%. The AMF spore germination rate for the AMF and AMF-F pellets coated with calcium alginate films depended on the alginate concentration. A 2% sodium alginate formulation for the coating films resulted in optimal AMF spore germination rates and mechanical properties for handling, transport, and stability. The inclusion of a sterilized organic fertilizer in the encapsulated AMF-F pellets considerably induced AMF mycelial growth and helped prolong the shelf life of the pellets. In soil, the AMF-F pellets encapsulated with alginate initially degraded faster than the alginate-encapsulated AMF pellets. However, both types of pellets were fully degraded within 30 days. It was demonstrated that AMF and AMF-F could promote colonization and provided resistance to drought stress in maize potted plants

    Regulation of curcuminoids, photosynthetic abilities, total soluble sugar, and rhizome yield traits in two cultivars of turmeric (Curcuma longa) using exogenous foliar paclobutrazol

    Get PDF
    Paclobutrazol (PBZ) is a member of plant growth retardants, commonly applied for growth regulation, yield improvement, and biotic and abiotic stress alleviation. However, the effects of PBZ on turmeric (Curcuma longa L.; Zingiberaceae), a rhizomatous herb, have not been well established. The objective of this investigation was to gain a better understanding of the effect of PBZ on two different varieties of turmeric plants, ‘Surat Thani’ (‘URT’; high curcuminoids >5% w/w) and ‘Pichit’ (‘PJT’; low curcuminoids <3% w/w). Pseudostem height of cv. ‘PJT’ treated by 340 µM PBZ was significantly decreased by 14.82% over control, whereas it was unchanged in cv. ‘URT’. Interestingly, leaf greenness (SPAD value), maximum quantum yield of PSII (Fv/Fm) and photon yield of PSII (ΦPSII) in cv. ‘PJT’ treated by 340 µM PBZ were significantly elevated by 1.47, 1.28 and 1.23 folds, over control respectively. Net photosynthetic rate (Pn) in cv. ‘PJT’ declined by 38.58% (340 µM PBZ) over control, as a result of low levels of total soluble sugars (TSS; 127.8 mg g-1 DW) in turmeric rhizome. A positive relation between photosynthetic abilities and aerial fresh weight was demonstrated. In addition, a negative relationship between TSS and total curcuminoids was evidently found (R2 = 0.4524). Curcuminoids yield in turmeric rhizomes significantly dropped, depending on the degree of exogenous foliar PBZ applications. In summary, cv. PJT was found to be very sensitive to PBZ application, whereas rhizome yield and growth traits and high amount of curcuminoids were retained in cv. ‘URT’. Plant growth retention in turmeric cv. ‘URT’ using 170 mM PBZ foliar spray without negative effects on rhizome biomass and total curcuminoids content was demonstrated

    Water-deficit tolerant classification in mutant lines of indica rice

    Get PDF
    Water shortage is a major abiotic stress for crop production worldwide, limiting the productivity of crop species, especially in dry-land agricultural areas. This investigation aimed to classify the water-deficit tolerance in mutant rice (Oryza sativa L. spp. indica) genotypes during the reproductive stage. Proline content in the flag leaf of mutant lines increased when plants were subjected to water deficit. Relative water content (RWC) in the flag leaf of different mutant lines dropped in relation to water deficit stress. A decrease RWC was positively related to chlorophyll a degradation. Chlorophyll a , chlorophyll b , total chlorophyll , total carotenoids , maximum quantum yield of PSII , stomatal conductance , transpiration rate and water use efficiency in mutant lines grown under water deficit conditions declined in comparison to the well-watered, leading to a reduction in net-photosynthetic rate. In addition, when exposed to water deficit, panicle traits, including panicle length and fertile grains were dropped. The biochemical and physiological data were subjected to classify the water deficit tolerance. NSG19 (positive control) and DD14 were identified as water deficit tolerant, and AA11, AA12, AA16, BB13, BB16, CC12, CC15, EE12, FF15, FF17, G11 and IR20 (negative control) as water deficit sensitive, using Ward's method
    corecore