234 research outputs found

    Overexpression of alfalfa mitochondrial HSP23 in prokaryotic and eukaryotic model systems confers enhanced tolerance to salinity and arsenic stress

    Get PDF
    The cloning and characterization of a gene (MsHSP23) coding for a heat shock protein in alfalfa in a prokaryotic and model plant system is described. MsHSP23 contains a 633 bp ORF encoding a polypeptide of 213 amino acids and exhibits greater sequence similarity to mitochondrial sHSPs from dicotyledons than to those from monocotyledons. When expressed in bacteria, recombinant MsHSP23 conferred tolerance to salinity and arsenic stress. Furthermore, MsHSP23 was cloned in a plant expressing vector and transformed into tobacco, a eukaryotic model organism. The transgenic plants exhibited enhanced tolerance to salinity and arsenic stress under ex vitro conditions. In comparison to wild type plants, the transgenic plants exhibited significantly lower electrolyte leakage. Moreover, the transgenic plants had superior germination rates when placed on medium containing arsenic. Taken together, these overexpression results imply that MsHSP23 plays an important role in salinity and arsenic stress tolerance in transgenic tobacco. This approach could be useful to develop stress tolerant crops including forage crops

    Pentoxifylline Attenuates Methionine- and Choline-Deficient-Diet-Induced Steatohepatitis by Suppressing TNF- α

    Get PDF
    Background. Pentoxifylline (PTX) anti-TNF properties are known to exert hepatoprotective effects in various liver injury models. The aim of this study was to investigate whether PTX has beneficial roles in the development of methionine- and choline-deficient-(MCD-) diet-induced NAFLD SD rats in vivo and TNF-α-induced Hep3B cells in vitro. Methods. SD Rats were classified according to diet (chow or MCD diet) and treatment (normal saline or PTX injection) over a period of 4 weeks: group I (chow + saline, n=4), group II (chow + PTX), group III (MCD + saline), and group IV (MCD + PTX). Hep3B cells were treated with 100 ng/ml TNF-α (24 h) in the absence or presence of PTX (1 mM). Results. PTX attenuated MCD-diet-induced serum ALT levels and hepatic steatosis. In real-time PCR and western blotting analysis, PTX decreased MCD-diet-induced TNF-alpha mRNA expression and proapoptotic unfolded protein response by ER stress (GRP78, p-eIF2, ATF4, IRE1α, CHOP, and p-JNK activation) in vivo. PTX (1 mM) reduced TNF-α-induced activation of GRP78, p-eIF2, ATF4, IRE1α, and CHOP in vitro. Conclusion. PTX has beneficial roles in the development of MCD-diet-induced steatohepatitis through partial suppression of TNF-α and ER stress

    Inadvertent discogram during transforaminal epidural injection in patients with lumbar disc herniation -A report of 2 cases-

    Get PDF
    The transforaminal epidural injection (TFEI) has been preferred in many cases because it can deliver the injected dose of medication closer to the nerve root and better facilitate ventral epidural flow compared to other methods. However, in patients with deformities not demonstrated on fluoroscopic imaging, the needle may enter unwanted locations. We treated two cases of intradiscal injection of contrast dye, during the TFEI, in patients with lumbar disc herniation

    Tristetraprolin down-regulates IL-23 expression in colon cancer cells.

    Get PDF
    mRNA 3'UTR demonstrated that the ARE cluster between the third and fifth AREs was responsible for TTP-mediated destabilization of IL-23 mRNA. A RNA electrophoretic mobility shift assay confirmed that TTP binds to this ARE cluster. Taken together, these results demonstrate that TTP acts as a negative regulator of IL-23 gene expression in mouse colon cancer cells and suggest its potential application as a novel therapeutic target to control IL-23-mediated tumor promotion

    Unbiased analysis of the impact of micropatterned biomaterials on macrophage behaviour provides insights beyond pre-defined polarisation states

    Get PDF
    Macrophages are master regulators of immune responses towards implanted biomaterials. The activation state adopted by macrophages in response to biomaterials determines their own phenotype and function as well as those of other resident and infiltrating immune and non-immune cells in the area. A wide spectrum of macrophage activation states exists, with M1 (pro-inflammatory) and M2 (anti-inflammatory) representing either ends of the spectrum. In biomaterials research, cellinstructive surfaces that favour or induce M2 macrophages have been considered as beneficial due to the anti-inflammatory and pro-regenerative properties of these cells. In this study, we used a gelatin methacryloyl (GelMA) hydrogel platform to determine whether micropatterned surfaces can modulate the phenotype and function of human macrophages. The effect of microgrooves/ridges and micropillars on macrophage phenotype, function, and gene expression profile were assessed using conventional methods (morphology, cytokine profile, surface marker expression, phagocytosis) and gene microarrays. Our results demonstrated that micropatterns did induce distinct gene expression profiles in human macrophages cultured on microgrooves/ridges and micropillars. Significant changes were observed in genes related to primary metabolic processes such as transcription, translation, protein trafficking, DNA repair and cell survival. However, interestingly conventional phenotyping methods, relying on surface marker expression and cytokine profile, were not able to distinguish between the different conditions, and indicated no clear shift in cell activation towards an M1 or M2 phenotypes. This highlights the limitations of studying the effect of different physicochemical conditions on macrophages by solely relying on conventional markers that are primarily developed to differentiate between cytokine polarised M1 and M2 macrophages. We therefore, propose the adoption of unbiased screening methods in determining macrophage responses to biomaterials. Our data clearly shows that the exclusive use of conventional markers and methods for determining macrophage activation status could lead to missed opportunities for understanding and exploiting macrophage responses to biomaterials

    Correlation of long interspersed element-1 open reading frame 1 and c-Met proto-oncogene protein expression in primary and recurrent colorectal cancers

    Get PDF
    Background Colorectal cancer is one of the most common cancers worldwide. Colorectal cancer that has recurred and metastasized to other organs also has a very poor prognosis. According to recent studies, the long interspersed element-1 (LINE-1) retrotransposon open reading frame (ORF) is located in the intron of the c-Met proto-oncogene, which is involved in cancer progression and metastasis, and regulates its expression. However, no study has compared the expression patterns of LINE-1 ORF1 and c-Met, which are closely related to cancer progression and metastasis, and their correlation in primary and recurrent cancers. Methods In the present study, we compared the expression patterns of LINE-1 ORF1 and c-Met in both primary and recurrent colorectal cancer tissues from 10 patients. Expression patterns and correlations between LINE-1 ORF1 and c-Met proto-oncogene proteins were analyzed by immunofluorescence staining using both LINE-1 ORF1 and c-Met antibodies. Results The expression patterns of LINE-1 ORF1 and c-Met showed significant individual differences, and the expression of both proteins was correlated in all colorectal cancer patients. However, the expression levels of LINE-1 ORF1 and c-Met were not significantly different between primary and recurrent colorectal cancers. Conclusions The protein expression levels of LINE-1 ORF1 and c-Met were correlated, but did not change significantly in cases of recurrent colorectal cancer in the same patient
    corecore