2,236 research outputs found

    A new approach to the modelling of local defects in crystals: the reduced Hartree-Fock case

    Get PDF
    This article is concerned with the derivation and the mathematical study of a new mean-field model for the description of interacting electrons in crystals with local defects. We work with a reduced Hartree-Fock model, obtained from the usual Hartree-Fock model by neglecting the exchange term. First, we recall the definition of the self-consistent Fermi sea of the perfect crystal, which is obtained as a minimizer of some periodic problem, as was shown by Catto, Le Bris and Lions. We also prove some of its properties which were not mentioned before. Then, we define and study in details a nonlinear model for the electrons of the crystal in the presence of a defect. We use formal analogies between the Fermi sea of a perturbed crystal and the Dirac sea in Quantum Electrodynamics in the presence of an external electrostatic field. The latter was recently studied by Hainzl, Lewin, S\'er\'e and Solovej, based on ideas from Chaix and Iracane. This enables us to define the ground state of the self-consistent Fermi sea in the presence of a defect. We end the paper by proving that our model is in fact the thermodynamic limit of the so-called supercell model, widely used in numerical simulations.Comment: Final version, to appear in Comm. Math. Phy

    Development of ultra-light pixelated ladders for an ILC vertex detector

    Full text link
    The development of ultra-light pixelated ladders is motivated by the requirements of the ILD vertex detector at ILC. This paper summarizes three projects related to system integration. The PLUME project tackles the issue of assembling double-sided ladders. The SERWIETE project deals with a more innovative concept and consists in making single-sided unsupported ladders embedded in an extra thin plastic enveloppe. AIDA, the last project, aims at building a framework reproducing the experimental running conditions where sets of ladders could be tested

    Quantum information can be negative

    Full text link
    Given an unknown quantum state distributed over two systems, we determine how much quantum communication is needed to transfer the full state to one system. This communication measures the "partial information" one system needs conditioned on it's prior information. It turns out to be given by an extremely simple formula, the conditional entropy. In the classical case, partial information must always be positive, but we find that in the quantum world this physical quantity can be negative. If the partial information is positive, its sender needs to communicate this number of quantum bits to the receiver; if it is negative, the sender and receiver instead gain the corresponding potential for future quantum communication. We introduce a primitive "quantum state merging" which optimally transfers partial information. We show how it enables a systematic understanding of quantum network theory, and discuss several important applications including distributed compression, multiple access channels and multipartite assisted entanglement distillation (localizable entanglement). Negative channel capacities also receive a natural interpretation

    Extended Classical Over-Barrier Model for Collisions of Highly Charged Ions with Conducting and Insulating Surfaces

    Full text link
    We have extended the classical over-barrier model to simulate the neutralization dynamics of highly charged ions interacting under grazing incidence with conducting and insulating surfaces. Our calculations are based on simple model rates for resonant and Auger transitions. We include effects caused by the dielectric response of the target and, for insulators, localized surface charges. Characteristic deviations regarding the charge transfer processes from conducting and insulating targets to the ion are discussed. We find good agreement with previously published experimental data for the image energy gain of a variety of highly charged ions impinging on Au, Al, LiF and KI crystals.Comment: 32 pages http://pikp28.uni-muenster.de/~ducree

    Drift chamber with a c-shaped frame

    Get PDF
    We present the construction of a planar drift chamber with wires stretched between two arms of a c-shaped aluminium frame. The special shape of the frame allows to extendthe momentum acceptance of the COSY-11 detection system towards lower momenta without suppressing the high momentum particles. The proposed design allows for construction of tracking detectors covering small angles with respect to the beam, which can be installed and removed without dismounting the beam-pipe. For a three-dimensional track reconstruction a computer code was developed using a simple algorithm of hit preselection.Comment: submitted to Nucl. Instr. & Meth

    Topological features for monitoring human activities at distance

    Get PDF
    In this paper, a topological approach for monitoring human activities is presented. This approach makes possible to protect the person’s privacy hiding details that are not essential for processing a security alarm. First, a stack of human silhouettes, extracted by background subtraction and thresholding, are glued through their gravity centers, forming a 3D digital binary image I. Secondly, different orders of the simplices are applied on a simplicial complex obtained from I, which capture relations among the parts of the human body when walking. Finally, a topological signature is extracted from the persistence diagrams according to each order. The measure cosine is used to give a similarity value between topological signatures. In this way, the powerful topological tool known as persistent homology is novelty adapted to deal with gender classification, person identification, carrying bag detection and simple action recognition. Four experiments show the strength of the topological feature used; three of they use the CASIA-B database, and the fourth use the KTH database to present the results in the case of simple actions recognition. In the first experiment the named topological signature is evaluated, obtaining 98.8% (lateral view) of correct classification rates for gender identification. In the second one are shown results for person identification, obtaining an average of 98.5%. In the third one the result obtained is 93.8% for carrying bag detection. And in the last experiment the results were 97.7% walking and 97.5% running, which were the actions took from the KTH database

    Information Causality as a Physical Principle

    Full text link
    Quantum physics exhibits remarkable distinguishing characteristics. For example, it gives only probabilistic predictions (non-determinism) and does not allow copying of unknown state (no-cloning). Quantum correlations may be stronger than any classical ones, nevertheless information cannot be transmitted faster than light (no-signaling). However, all these features do not single out quantum physics. A broad class of theories exist which share such traits with quantum mechanics, while they allow even stronger than quantum correlations. Here, we introduce the principle of Information Causality. It states that information that Bob can gain about a previously completely unknown to him data set of Alice, by using all his local resources (which may be correlated with her resources) and a classical communication from her, is bounded by the information volume of the communication. In other words, if Alice communicates m bits to Bob, the total information access that Bob gains to her data is not greater than m. For m=0, Information Causality reduces to the standard no-signaling principle. We show that this new principle is respected both in classical and quantum physics, whereas it is violated by all the no-signaling correlations which are stronger that the strongest quantum correlations. Maximally strong no-signalling correlations would allow Bob access to any m bit subset of the whole data set held by Alice. If only one bit is sent by Alice (m=1), this is tantamount to Bob being able to access the value of any single bit of Alice's data (but of course not all of them). We suggest that Information Causality, a generalization of no-signaling, might be one of the foundational properties of Nature.Comment: This version of the paper is as close to the published one as legally possibl

    Entanglement distribution and quantum discord

    Full text link
    Establishing entanglement between distant parties is one of the most important problems of quantum technology, since long-distance entanglement is an essential part of such fundamental tasks as quantum cryptography or quantum teleportation. In this lecture we review basic properties of entanglement and quantum discord, and discuss recent results on entanglement distribution and the role of quantum discord therein. We also review entanglement distribution with separable states, and discuss important problems which still remain open. One such open problem is a possible advantage of indirect entanglement distribution, when compared to direct distribution protocols.Comment: 7 pages, 2 figures, contribution to "Lectures on general quantum correlations and their applications", edited by Felipe Fanchini, Diogo Soares-Pinto, and Gerardo Adess

    Systematic Cu-63 NQR studies of the stripe phase in La(1.6-x)Nd(0.4)Sr(x)CuO(4) for 0.07 <= x <= 0.25

    Full text link
    We demonstrate that the integrated intensity of Cu-63 nuclear quadrupole resonance (NQR) in La(1.6-x)Nd(0.4)Sr(x)CuO(4) decreases dramatically below the charge-stripe ordering temperature T(charge). Comparison with neutron and X-ray scattering indicates that the wipeout fraction F(T) (i.e. the missing fraction of the integrated intensity of the NQR signal) represents the charge-stripe order parameter. The systematic study reveals bulk charge-stripe order throughout the superconducting region 0.07 <= x <= 0.25. As a function of the reduced temperature t = T/T(charge), the temperature dependence of F(t) is sharpest for the hole concentration x=1/8, indicating that x=1/8 is the optimum concentration for stripe formation.Comment: 10 pages of text and captions, 11 figures in postscript. Final version, with new data in Fig.
    corecore