122 research outputs found

    The Influence of the COVID-19 Pandemic on the Clinical Application of Evidence-Based Practice in Health Science Professionals

    Get PDF
    (1) Background: Evidence-based practice (EBP) informs daily clinical interventions with the purpose of seeking changes to traditional practice through scientific evidence that justifies the reasons for our actions. The objectives were to describe the barriers, beliefs, and attitudes in the application of EBP among university health professionals (not doctors) and to evaluate the influence of the COVID-19 pandemic among them. (2) Methods: This prospective study is both descriptive and observational. The individuals under study were university health professionals (not doctors) from various autonomous regions within Spain, in both public and private spheres. Sociodemographic and labor-related variables linked to the research and its completion were studied. Likewise, the survey instrument Health Sciences Evidence-Based Practice questionnaire (HS-EBP) was administered to evaluate the barriers to, beliefs in, and attitudes towards evidence-based practice. (3) Results: A total of 716 responses were gathered, of which 387 were collected during the period of confinement, and 343 in the COVID-19 post-confinement period. Possible associations that might help respond to the objectives were explored through a correlational study between the sociodemographic variables and each sub-scale of the HS-EBP 30 questionnaire (n = 716). (4) Conclusions: Barriers to, beliefs in, and attitudes towards evidence-based practice are described. There is a leadership gap where line management provides insufficient motivation to follow work routines. The COVID-19 pandemic has caused immense stress among health professionals. The post-confinement group showed a significant change in the variables "beliefs and attitudes", and likewise in the "evaluation" block, justified by the need to update knowledge and to apply evidence.This project has been financed with the help of IDIVAL, Project number NVAL 19/04 through the Marqués de Valdecilla Research Institute, IDIVAL, Spain

    Users satisfaction with nursing care in the emergency department

    No full text
    La satisfacción del usuario es un concepto cada vez más relevante en la asistencia sanitaria, siendo ampliamente utilizado como un indicador de calidad en la atención médica y como una medida fundamental de los servicios de salud y de la evaluación del proceso asistencial. La opinión de los usuarios se vislumbra como un elemento clave para poder conocer cómo se sienten atendidos y cuidados por los profesionales de enfermería, permitiendo conocer su percepción e implantar medidas para mejorar la atención. La satisfacción del usuario con la atención de enfermería es considerada como el principal factor predictivo de satisfacción general con la asistencia hospitalaria. Los servicios de Urgencias constituyen la vía de acceso para un número cada vez mayor de usuarios, lo que implica que puedan plantearse una serie de dificultades o problemas en el proceso asistencial por parte de los profesionales de enfermería, incrementando la importancia de la satisfacción de éstos con el servicio.Máster en Investigación en Cuidados de Salu

    Revista Temas Agrarios Volumen 26; Suplemento 1 de 2021

    No full text
    1st International and 2nd National Symposium of Agronomic Sciences: The rebirth of the scientific discussion space for the Colombian Agro.1 Simposio Intenacional y 2 Nacional de Ciencias Agronómicas: El renacer del espacio de discusión científica para el Agro colombiano

    Pseudorapidity densities of charged particles with transverse momentum thresholds in pp collisions at √ s = 5.02 and 13 TeV

    No full text
    The pseudorapidity density of charged particles with minimum transverse momentum (pT) thresholds of 0.15, 0.5, 1, and 2 GeV/c is measured in pp collisions at the center of mass energies of √s=5.02 and 13 TeV with the ALICE detector. The study is carried out for inelastic collisions with at least one primary charged particle having a pseudorapidity (η) within 0.8pT larger than the corresponding threshold. In addition, measurements without pT-thresholds are performed for inelastic and nonsingle-diffractive events as well as for inelastic events with at least one charged particle having |η|2GeV/c), highlighting the importance of such measurements for tuning event generators. The new measurements agree within uncertainties with results from the ATLAS and CMS experiments obtained at √s=13TeV.

    Measurement of the impact-parameter dependent azimuthal anisotropy in coherent ρ0 photoproduction in Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The first measurement of the impact-parameter dependent angular anisotropy in the decay of coherently photoproduced ρ0 mesons is presented. The ρ0 mesons are reconstructed through their decay into a pion pair. The measured anisotropy corresponds to the amplitude of the cos(2ϕ) modulation, where ϕ is the angle between the two vectors formed by the sum and the difference of the transverse momenta of the pions, respectively. The measurement was performed by the ALICE Collaboration at the LHC using data from ultraperipheral Pb−Pb collisions at a center-of-mass energy of sNN−−−√ = 5.02 TeV per nucleon pair. Different impact-parameter regions are selected by classifying the events in nuclear-breakup classes. The amplitude of the cos(2ϕ) modulation is found to increase by about one order of magnitude from large to small impact parameters. Theoretical calculations, which describe the measurement, explain the cos(2ϕ) anisotropy as the result of a quantum interference effect at the femtometer scale that arises from the ambiguity as to which of the nuclei is the source of the photon in the interaction

    Charm production and fragmentation fractions at midrapidity in pp collisions at √s = 13 TeV

    No full text
    Measurements of the production cross sections of prompt D0, D+, D∗+, D+s, Λ+c, and Ξ+c charm hadrons at midrapidity in proton−proton collisions at s√=13 TeV with the ALICE detector are presented. The D-meson cross sections as a function of transverse momentum (pT) are provided with improved precision and granularity. The ratios of pT-differential meson production cross sections based on this publication and on measurements at different rapidity and collision energy provide a constraint on gluon parton distribution functions at low values of Bjorken-x (10−5−10−4). The measurements of Λ+c (Ξ+c) baryon production extend the measured pT intervals down to pT=0(3)~GeV/c. These measurements are used to determine the charm-quark fragmentation fractions and the cc¯¯ production cross section at midrapidity (|y|<0.5) based on the sum of the cross sections of the weakly-decaying ground-state charm hadrons D0, D+, D+s, Λ+c, Ξ0c and, for the first time, Ξ+c, and of the strongly-decaying J/psi mesons. The first measurements of Ξ+c and Σ0,++c fragmentation fractions at midrapidity are also reported. A significantly larger fraction of charm quarks hadronising to baryons is found compared to e+e− and ep collisions. The cc¯¯ production cross section at midrapidity is found to be at the upper bound of state-of-the-art perturbative QCD calculations

    Investigating the nature of the K∗0(700) state with π±K0S correlations at the LHC

    No full text
    The first measurements of femtoscopic correlations with the particle pair combinations π±K0S in pp collisions at s√=13 TeV at the Large Hadron Collider (LHC) are reported by the ALICE experiment. Using the femtoscopic approach, it is shown that it is possible to study the elusive K∗0(700) particle that has been considered a tetraquark candidate for over forty years. Boson source parameters and final-state interaction parameters are extracted by fitting a model assuming a Gaussian source to the experimentally measured two-particle correlation functions. The final-state interaction is modeled through a resonant scattering amplitude, defined in terms of a mass and a coupling parameter, decaying into a π±K0S pair. The extracted mass and Breit-Wigner width, derived from the coupling parameter, of the final-state interaction are found to be consistent with previous measurements of the K∗0(700). The small value and increasing behavior of the correlation strength with increasing source size support the hypothesis that the K∗0(700) is a four-quark state, i.e. a tetraquark state. This latter trend is also confirmed via a simple geometric model that assumes a tetraquark structure of the K∗0(700) resonance

    Pseudorapidity dependence of anisotropic flow and its decorrelations using long-range multiparticle correlations in Pb-Pb and Xe-Xe collisions

    No full text
    The pseudorapidity dependence of elliptic (v2), triangular (v3), and quadrangular (v4) flow coefficients of charged particles measured in Pb-Pb collisions at a centre-of-mass energy per nucleon pair of sNN−−−√=5.02 TeV and in Xe-Xe collisions at sNN−−−√=5.44 TeV with ALICE at the LHC are presented. The measurements are performed in the pseudorapidity range −3.5<η<5 for various centrality intervals using two- and multi-particle cumulants with the subevent method. The flow probability density function (p.d.f.) is studied with the ratio of flow coefficient v2 calculated with four- and two-particle cumulant, and suggests that the variance of flow p.d.f. is independent of pseudorapidity. The decorrelation of the flow vector in the longitudinal direction is probed using two-particle correlations. The results measured with respect to different reference regions in pseudorapidity exhibit differences, argued to be a result of saturating decorrelation effect above a certain pseudorapidity separation, in contrast to previous publications which assign this observation to non-flow effects. The results are compared to 3+1 dimensional hydrodynamic and the AMPT transport model calculations. Neither of the models is able to simultaneously describe the pseudorapidity dependence of measurements of anisotropic flow and its fluctuations. The results presented in this work highlight shortcomings in our current understanding of initial conditions and subsequent system expansion in the longitudinal direction. Therefore, they provide input for its improvement

    Two-particle transverse momentum correlations in pp and p–Pb collisions at energies available at the CERN Large Hadron Collider

    No full text
    Two-particle transverse momentum differential correlators, recently measured in Pb--Pb collisions at energies available at the CERN Large Hadron Collider (LHC), provide an additional tool to gain insights into particle production mechanisms and infer transport properties, such as the ratio of shear viscosity to entropy density, of the medium created in Pb-Pb collisions. The longitudinal long-range correlations and the large azimuthal anisotropy measured at low transverse momenta in small collision systems, namely pp and p-Pb, at LHC energies resemble manifestations of collective behaviour. This suggests that locally equilibrated matter may be produced in these small collision systems, similar to what is observed in Pb-Pb collisions. In this work, the same two-particle transverse momentum differential correlators are exploited in pp and p-Pb collisions at s√=7 TeV and sNN−−−√=5.02 TeV, respectively, to seek evidence for viscous effects. Specifically, the strength and shape of the correlators are studied as a function of the produced particle multiplicity to identify evidence for longitudinal broadening that might reveal the presence of viscous effects in these smaller systems. The measured correlators and their evolution from pp and p--Pb to Pb--Pb collisions are additionally compared to predictions from Monte Carlo event generators, and the potential presence of viscous effects is discussed

    Measurements of the groomed jet radius and momentum splitting fraction with the soft drop and dynamical grooming algorithms in pp collisions at √s = 5.02 TeV

    No full text
    This article presents measurements of the groomed jet radius and momentum splitting fraction in pp collisions at s√=5.02 TeV with the ALICE detector at the Large Hadron Collider. Inclusive charged-particle jets are reconstructed at midrapidity using the anti-kT algorithm for transverse momentum 60<pchjetT<80 GeV/c. We report results using two different grooming algorithms: soft drop and, for the first time, dynamical grooming. For each grooming algorithm, a variety of grooming settings are used in order to explore the impact of collinear radiation on these jet substructure observables. These results are compared to perturbative calculations that include resummation of large logarithms at all orders in the strong coupling constant. We find good agreement of the theoretical predictions with the data for all grooming settings considered
    corecore