43 research outputs found

    Analysis of Hydrodynamics and Heat Transfer in a Thin Liquid Film Flowing over a Rotating Disk by Integral Method

    Get PDF
    An integral analysis of hydrodynamics and heat transfer in a thin liquid film flowing over a rotating disk surface is presented for both constant temperature and constant heat flux boundary conditions. The model is found to capture the correct trends of the liquid film thickness variation over the disk surface and compare reasonably well with experimental results over the range of Reynolds and Rossby numbers covering both inertia and rotation dominated regimes. Nusselt number variation over the disk surface shows two types of behavior. At low rotation rates, the Nusselt number exhibits a radial decay with Nusselt number magnitudes increasing with higher inlet Reynolds number for both constant wall temperature and heat flux cases. At high rotation rates, the Nusselt number profiles exhibit a peak whose location advances radially outward with increasing film Reynolds number or inertia. The results also compare favorably with the full numerical simulation results from an earlier study as well as with the reported experimental results

    Modelling spontaneous combustion of coal

    Get PDF
    Spontaneous combustion of coal is an important problem in mining and storage, in terms of both safety and economics. This is because coal reacts with oxygen in the air and an exothermic reaction occurs, even in ambient conditions. The heat of the reaction accumulates and the reaction becomes progressively faster and thermal runaway may take place to the point of ignition. A detailed computer model has been developed to simulate a bulk-scale, one-dimensional test column. Predictions from this model can then be used to simulate full-scale storage conditions. Model predictions are verified by using the experimental results from the test column at the University of Queensland. A 2-m column is being used in this laboratory to conduct a practical test capable of providing reliable data on coal self-heating. Coal self-heating results produced with the 2-m column are consistent with theory. In particular, the hot spot development in test runs closely matches model predictions. Features of moisture transfer and hot spot migration are clearly visible, both in the model and in tests in the column. Under the specific conditions considered in this study, it is shown that a subbituminous coal can reach thermal runaway in 4.5 days. This result is confirmed by observations made at the mine site, where hot spots have been found to occur within this timeframe. The results obtained in this study indicate that there is a definite need to consider the influence of coal moisture on spontaneous combustion

    Turbulent ‘stopping plumes’ and plume pinch-off in uniform surroundings

    Get PDF
    Observations of turbulent convection in the environment are of variously sus- tained plume-like flows or intermittent thermal-like flows. At different times of the day the prevailing conditions may change and consequently the observed flow regimes may change. Understanding the link between these flows is of practical importance meteorologically, and here we focus our interest upon plume-like regimes that break up to form thermal-like regimes. It has been shown that when a plume rises from a boundary with low conductivity, such as arable land, the inability to maintain a rapid enough supply of buoyancy to the plume source can result in the turbulent base of the plume separating and rising away from the source. This plume ‘pinch-off’ marks the onset of the intermittent thermal-like behavior. The dynamics of turbulent plumes in a uniform environment are explored in order to investigate the phenomenon of plume pinch-off. The special case of a turbulent plume having its source completely removed, a ‘stopping plume’, is considered in particular. The effects of forcing a plume to pinch-off, by rapidly reducing the source buoyancy flux to zero, are shown experi- mentally. We release saline solution into a tank filled with fresh water generating downward propagating steady turbulent plumes. By rapidly closing the plume nozzle, the plumes are forced to pinch-off. The plumes are then observed to detach from the source and descend into the ambient. The unsteady buoyant region produced after pinch-off, cannot be described by the power-law behavior of either classical plumes or thermals, and so the terminology ‘stopping plume’ (analogous to a ‘starting plume’) is adopted for this type of flow. The propagation of the stopping plume is shown to be approximately linearly dependent on time, and we speculate therefore that the closure of the nozzle introduces some vorticity into the ambient, that may roll up to form a vortex ring dominating the dynamics of the base of a stopping plume

    Experiments on Hydrodynamic and Thermal Behaviors of Thin Liquid Films

    No full text
    ABSTRACT An experimental study of heat transfer into a thin film of liquid water on a rotating disk is described. The film was introduced from a flow collar at the center of a heated, horizontal disk at a fixed initial film thickness with a uniform radial velocity. Radial distribution of the disk surface temperatures was measured using a thermocouple / slip ring arrangement. Experiments were performed for a range of liquid flow rates between 3.0 lpm and 15.0 lpm corresponding to Reynolds numbers (based on the liquid inlet gap height and velocity) between 238 and 1188. The angular speed of the disk was varied from 0 rpm to 500 rpm. The local heat transfer coefficient was determined based on the heat flux supplied to the disk and the temperature difference between the measured disk surface temperature and the entrance temperature of the liquid onto the disk. The local heat transfer coefficient was seen to increase with increasing flow rate as well as increasing angular velocity of the disk. Effect of rotation on heat transfer was largest for the lower liquid flow rates with the effect gradually decreasing with increasing liquid flow rates. Semi-empirical correlations are presented in this study for the local and average Nusselt numbers. In addition to the heat transfer characterization, the thickness of the liquid film on the disk surface was measured by an optical method, including the characteristics of the hydraulic jump and the subcritical and supercritical flow regions

    Combustion with Multiple Flames under High Strain Rates

    No full text
    corecore