675 research outputs found

    c(2x2) Interface Alloys in Co/Cu Multilayers - Influence on Interlayer Exchange Coupling and GMR

    Full text link
    The influence of a c(2x2) ordered interface alloy of 3d transition metals at the ferromagnet/nonmagnet interface on interlayer exchange coupling (IXC), the formation of quantum well states (QWS) and the phenomenon of Giant MagnetoResistance is investigated. We obtained a strong dependence of IXC on interface alloy formation. The GMR ratio is also strongly influenced. We found that Fe, Ni and Cu alloys at the interface enhance the GMR ratio for in-plane geometry by nearly a factor of 2.Comment: 14 pages, 5 figures, 1 table, subm. to PR

    Melhoramento da cana-de-açúcar: marco sucro-alcooleiro no Brasil.

    Get PDF
    Este artigo apresenta um histórico do melhoramento da cana-de-açúcar no Brasil

    É fácil controlar a parlatória dos citros?

    Get PDF
    Proposta uma metodologia de controle físico da parlatória dos citros através da lavagem do tronco e pernadas da planta com água em alta pressão.bitstream/CNPMA/5825/1/comunicado_21.pd

    Stretched exponential relaxation in the mode-coupling theory for the Kardar-Parisi-Zhang equation

    Full text link
    We study the mode-coupling theory for the Kardar-Parisi-Zhang equation in the strong-coupling regime, focusing on the long time properties. By a saddle point analysis of the mode-coupling equations, we derive exact results for the correlation function in the long time limit - a limit which is hard to study using simulations. The correlation function at wavevector k in dimension d is found to behave asymptotically at time t as C(k,t)\simeq 1/k^{d+4-2z} (Btk^z)^{\gamma/z} e^{-(Btk^z)^{1/z}}, with \gamma=(d-1)/2, A a determined constant and B a scale factor.Comment: RevTex, 4 pages, 1 figur

    A Multidisciplinary Design Environment for Composite Rotor Blades

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97071/1/AIAA2012-1842.pd

    Geometrically nonlinear analysis of thin-walled composite box beams

    Get PDF
    A general geometrically nonlinear model for thin-walled composite space beams with arbitrary lay-ups under various types of loadings has been presented by using variational formulation based on the classical lamination theory. The nonlinear governing equations are derived and solved by means of an incremental Newton–Raphson method. A displacement-based one-dimensional finite element model that accounts for the geometric nonlinearity in the von Kármán sense is developed. Numerical results are obtained for thin-walled composite box beam under vertical load to investigate the effect of geometric nonlinearity and address the effects of the fiber orientation, laminate stacking sequence, load parameter on axial–flexural–torsional response

    Geometrically nonlinear theory of thin-walled composite box beams using shear-deformable beam theory

    Get PDF
    A general geometrically nonlinear model for thin-walled composite space beams with arbitrary lay-ups under various types of loadings is presented. This model is based on the first-order shear deformable beam theory, and accounts for all the structural coupling coming from both material anisotropy and geometric nonlinearity. The nonlinear governing equations are derived and solved by means of an incremental Newton–Raphson method. A displacement-based one-dimensional finite element model that accounts for the geometric nonlinearity in the von Kármán sense is developed. Numerical results are obtained for thin-walled composite box beams under vertical load to investigate the effects of shear deformation, geometric nonlinearity and fiber orientation on axial–flexural–torsional response

    Guided-wave signal processing using chirplet matching pursuits and mode correlation for structural health monitoring

    Full text link
    Signal processing algorithms for guided wave pulse echo-based structural health monitoring (SHM) must be capable of isolating individual reflections from defects in the structure, if any, which could be overlapping and multimodal. In addition, they should be able to estimate the time–frequency centers, the modes and individual energies of the reflections, which would be used to locate and characterize defects. Finally, they should be computationally efficient and amenable to automated processing. This work addresses these issues with a new algorithm employing chirplet matching pursuits followed by a mode correlation check for single point sensors. Its theoretical advantages over conventional time–frequency representations for SHM are elaborated. Results from numerical simulations and experiments in isotropic plate structures are presented, which show the capability of the proposed algorithm. Finally, the issue of in-plane triangulation is discussed and experimental work done to explore this issue is presented.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/58147/2/sms7_2_014.pd

    Structural Models for Flight Dynamic Analysis of Very Flexible Aircraft

    No full text
    Dissimilar analysis models are considered for the large structural deformations of aircraft with high-aspect-ratio composite wings. The different approaches include displacement-based, strain-based, and intrinsic geometrically-nonlinear beam models. Comparisons are made in terms of numerical efficiency and simplicity for integration of full aircraft flexibility in flight dynamics models. An analysis procedure is proposed based on model substructuring with a (linear) modal representation of both fuselage and tail and (nonlinear) intrinsic beam elements for the flexible wings. Copyright © 2009 by Rafael Palacios and Carlos E. S. Cesnik.Published versio
    corecore