
Citation:  Vo, Thuc P. and Lee, Jaehong (2009) Geometrically  nonlinear  analysis of thin-

walled composite box beams. Computers &  Structures , 87 (3–4). 236 - 245.

Published by: UNSPECIFIED

URL: http://www.sciencedirect.com/science/article/pii/S0045794908002095

This  version  was  downloaded  from  Northumbria  Research  Link:  

http://nrl.northumbria.ac.uk/13378/

Northumbria  University  has  developed Northumbria  Research  Link  (NRL)  to  enable 

users to access the University’s research output.  Copyright  © and moral  rights  for  items 

on NRL  are retained by the individual  author(s) and/or other  copyright  owners.  Single  

copies of full  items can be reproduced, displayed or performed, and given to third  parties  

in  any  format  or  medium  for  personal  research or  study,  educational,  or  not-for-profit  

purposes without  prior  permission  or  charge,  provided  the  authors,  tit le  and  full  

bibliographic  details  are  given,  as  well  as  a  hyperlink  and/or  URL  to  the  original  

metadata  page. The content  must  not  be changed in  any way.  Full  items must  not  be 

sold commercially  in  any format  or medium  without  formal  permission of the copyright  

holder.  The full  policy is available online: http://nrl.northumbria.ac.uk/policies.html

This document  may differ  from the final,  published version of the research and has been 

made available online in  accordance with  publisher  policies. To read and/or cite from the  

published  version  of the  research,  please visit  the  publisher’s  website  (a subscription  

may be required.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Northumbria Research Link

https://core.ac.uk/display/16381579?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nrl.northumbria.ac.uk/policies.html


Geometrically nonlinear analysis of thin-walled composite box beams

Thuc Phuong Vo∗ and Jaehong Lee†

Department of Architectural Engineering, Sejong University

98 Kunja Dong, Kwangjin Ku, Seoul 143-747, Korea

(Dated: August 25, 2008)

A general geometrically nonlinear model for thin-walled composite space beams with arbitrary

lay-ups under various types of loadings has been presented by using variational formulation based

on the classical lamination theory. The nonlinear governing equations are derived and solved

by means of an incremental Newton-Raphson method. A displacement-based one-dimensional

finite element model that accounts for the geometric nonlinearity in the von Kármán sense is

developed. Numerical results are obtained for thin-walled composite box beam under vertical load

to investigate the effect of geometric nonlinearity and address the effects of the fiber orientation,

laminate stacking sequence, load parameter on axial-flexural-torsional response.

Keywords: thin-walled composites; classical lamination theory; axial-flexural-torsional response; nonlinear theory

I. INTRODUCTION

Fiber-reinforced composite materials have been used over the past few decades in a variety of structures. Composites

have many desirable characteristics, such as high ratio of stiffness and strength to weight, corrosion resistance and

magnetic transparency. Thin-walled structural shapes made up of composite materials, which are usually produced

by pultrusion, are being increasingly used in many engineering fields.

The theory of thin-walled closed section members made of isotropic materials was first developed by Vlasov [1]

and Gjelsvik [2]. The large number of practical problems require a geometrically nonlinear formulation, such as the

postbuckling behavior, load carrying capacity of structures used in aeronautical, aerospace as well as in mechanical

and civil engineering. Within the formulation of this theory, the flexural displacements are assumed to be finite,
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while the twist angle is taken to arbitrarily large. In the development of a geometrically nonlinear beam element,

basically an updated Lagrangian or a total Lagrangian formulation can be employed. These formulations must be

implemented using appropriate displacement interpolation functions. Bathe and Bolourchi [3] presented two consis-

tent large rotation nonlinear three dimensional beam formulations: an updated Lagrangian and a total Lagrangian

formulation for a 2-node Hermitian interpolation beam. Thin-walled composite structures are often very thin and

have complicated material anisotropy. The studies of composite material carried out so far may broadly be divided

into two groups. The first and most common approach is based on an analytical technique, while the other ap-

proach requires a two-dimensional finite element analysis to obtain the cross-section stiffness matrix. Atilgan and

Hodges et al. [4,5] pioneered the second approach, which was referred to as the so-called ”Variational Asymptotic

Beam Section Analysis” (VABS). VABS used the variational asymptotic method (VAM) to split a three-dimensional

nonlinear elasticity problem into a two-dimensional linear cross-sectional analysis and a one-dimensional, nonlinear

beam problem. Hodges and co-workers (e.g., Cesnik et al. [6,7], Volovoi et al. [8], Yu et al. [9]) further applied the

concept introduced by VAM to two dimensional cross-sectional problem and derived closed-form expressions for the

cross-sectional stiffness coefficients of thin-walled beams. By using Atilgan and Hodges’s beam model, Jeon et al. [10]

developed an analysis model of large deflection for the static and dynamic analysis of composite box beams.

In the present investigation, an analytical approach is adopted for the derivation of the cross-sectional stiffness

matrix considering different effects and their coupling to yield a general formulation. Bauld and Tzeng [11] presented

nonlinear model for thin-walled composites by extending Gjelsvik’s formulation to the balanced symmetric laminated

composite materials. However, the formulation was somewhat not consistent in the sense that it used coordinate

mapping when developing nonlinear stresses instead of variational formulation. A finite element formulation was

developed by Stemple and Lee [12,13] to take into account the warping effect of composite beams undergoing large

deflection or finite rotation. Kalfon and Rand [14] derived the nonlinear theoretical modeling of laminated thin-walled

composite helicopter rotor blades. The derivation was based on nonlinear geometry with a detailed treatment of the

body loads in the axial direction which were induced by the rotation. Pai and Nayfeh [15] developed a fully nonlinear

theory of curved and twisted composite rotor blades. The theory accounted for warpings due to bending, extensional,

shearing and torsional loadings, and three-dimensional stress effects by using the results of a two-dimensional, static,

sectional, finite element analysis. Bhaskar and Librescu et al. [16,17] developed non-linear theory of composite thin-

walled beams, which was employed in a broad field of engineering problems. In this model, the transverse shear

deformation was taken into account but the warping torsion component was neglected. Special attention deserves the
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works of Machado, Cortinez and Piovan [18,19,20] who introduced a geometrically non-linear theory for thin-walled

composite beams for both open and closed cross-sections and took into account shear flexibility (bending and warping

shear). This non-linear formulation was developed by using a non-linear displacement field, whose rotations were

based on the rule of semi-tangential transformation. It was used for analyzing the stability of composite thin-walled

beam with general cross-section. Recently, by using a geometrically higher-order non-linear beam theory, Machado

[20] investigated the influence of large rotations on the buckling and free vibration behavior of thin-walled composite

beam. However, it was strictly valid for symmetric balanced laminates and especially orthotropic laminates. A general

geometrically nonlinear theory was derived by Lee [21] to study the lateral buckling of thin-walled composite beams

with monosymmetric sections.

In the present paper, the analytical model developed by the authors [22] is extended to the geometric nonlinearity. A

systematic approach based on the variational formulation is used to formulate the theory. A geometrically nonlinear

model for thin-walled composite space beams with arbitrary laminate stacking sequences is given. The general

nonlinear governing equations are derived and solved by means of an incremental Newton−Raphson method. Based

on the analytical model, a displacement-based one-dimensional finite element model that accounts for the geometric

nonlinearity in the von Kármán sense is developed. Numerical results are obtained for thin-walled composite box beam

under vertical load to investigate the effect of geometric nonlinearity and address the effects of the fiber orientation,

laminate stacking sequence, load parameter on axial-flexural-torsional response.

II. KINEMATICS

The theoretical developments presented in this paper require two sets of coordinate systems which are mutually

interrelated. The first coordinate system is the orthogonal Cartesian coordinate system (x, y, z), for which the x and

y axes lie in the plane of the cross section and the z axis parallel to the longitudinal axis of the beam. The second

coordinate system is the local plate coordinate (n, s, z) as shown in Fig.1, wherein the n axis is normal to the middle

surface of a plate element, the s axis is tangent to the middle surface and is directed along the contour line of the

cross section. The (n, s, z) and (x, y, z) coordinate systems are related through an angle of orientation θ as defined in

Fig.1. Point P is called the pole axis, through which the axis parallel to the z axis is called the pole axis.

To derive the analytical model for a thin-walled composite beam, the following assumptions are made:

1. The contour of the thin wall does not deform in its own plane.
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2. The linear shear strain γ̄sz of the middle surface is to have the same distribution in the contour direction as it

does in the St. Venant torsion in each element.

3. The Kirchhoff-Love assumption in classical plate theory remains valid for laminated composite thin-walled

beams.

According to assumption 1, the midsurface displacement components ū, v̄ at a point A in the contour coordinate

system can be expressed in terms of a displacements U, V of the pole P in the x, y directions, respectively, and the

rotation angle Φ about the pole axis,

ū(s, z) = U(z) sin θ(s) − V (z) cos θ(s) − Φ(z)q(s) (1a)

v̄(s, z) = U(z) cos θ(s) + V (z) sin θ(s) + Φ(z)r(s) (1b)

These equations apply to the whole contour. The out-of-plane shell displacement w̄ can now be found from the

assumption 2. For each element of middle surface, the shear strain become

γ̄sz =
∂v̄

∂z
+
∂w̄

∂s
= Φ′(z)

F (s)

t(s)
(2)

where t(s) is thickness of contour box section, F (s) is the St. Venant circuit shear flow. After substituting for v̄ from

Eq.(1) and considering the following geometric relations,

dx = ds cos θ (3a)

dy = ds sin θ (3b)

Eq.(2) can be integrated with respect to s from the origin to an arbitrary point on the contour,

w̄(s, z) = W (z) − U ′(z)x(s) − V ′(z)y(s) − Φ′(z)ω(s) (4)

where differentiation with respect to the axial coordinate z is denoted by primes (′); W represents the average axial

displacement of the beam in the z direction; x and y are the coordinates of the contour in the (x, y, z) coordinate

system; and ω is the so-called sectorial coordinate or warping function given by

ω(s) =

∫ s

s◦

[

r(s) −
F (s)

t(s)

]

ds (5a)

∮

i

F (s)

t(s)
ds = 2Ai i = 1, ..., n (5b)

where r(s) is height of a triangle with the base ds; Ai is the area circumscribed by the contour of the i circuit. The

explicit forms of ω(s) and F (s) for box section are given in Ref.[22].
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The displacement components u, v, w representing the deformation of any generic point on the profile section are

given with respect to the midsurface displacements ū, v̄, w̄ by the assumption 3.

u(s, z, n) = ū(s, z) (6a)

v(s, z, n) = v̄(s, z) − n
∂ū(s, z)

∂s
(6b)

w(s, z, n) = w̄(s, z) − n
∂ū(s, z)

∂z
(6c)

The von Kármán type strains, in which only the products of u, v and their derivatives are retained and all other

nonlinear terms are neglected, are considered and given by

ǫz =
∂w

∂z
+

1

2

[

(∂u

∂z

)2

+
(∂v

∂z

)2
]

(7a)

γsz =
∂v

∂z
+
∂w

∂s
(7b)

By substituting Eqs.(1), (4) and (6) into Eq.(7), and using the following relations

x− xp = q cos θ + r sin θ (8a)

y − yp = q sin θ − r cos θ (8b)

Eq.(7) can be rewritten as

ǫz = ǭz + nκ̄z + n2χ̄z (9a)

γsz = γ̄sz + nκ̄sz (9b)

where

ǭz =
∂w̄

∂z
+

1

2

[

(∂ū

∂z

)2
+

(∂v̄

∂z

)2
]

(10a)

κ̄z = −
∂2ū

∂z2
− 2

∂2ū

∂s∂z

∂v̄

∂z
(10b)

κ̄sz = −2
∂2ū

∂s∂z
(10c)

χ̄z =
( ∂2ū

∂s∂z

)2

(10d)

In Eq.(10), ǭz, κ̄z, κ̄sz and χ̄z are midsurface axial strain, biaxial curvature and high order curvature of the shell,

respectively. The above shell strains can be converted to beam strain components by substituting Eqs.(1), (4) and
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(6) into Eq.(10) as

ǭz = ǫ◦z + xκy + yκx + ωκω (11a)

κ̄z = κy sin θ − κx cos θ − κωq + 2χzr (11b)

κ̄sz = κsz (11c)

χ̄z = χz (11d)

where ǫ◦z, κx, κy, κω, κsz and χz are axial strain, biaxial curvatures in the x and y direction, warping curvature with

respect to the shear center, twisting and high order curvature in the beam, respectively defined as

ǫ◦z = W ′ +
1

2

[

U ′2 + V ′2 + (r2 + q2)Φ′2
]

− xpV
′Φ′ + ypU

′Φ′ (12a)

κx = −V ′′ − U ′Φ′ (12b)

κy = −U ′′ + V ′Φ′ (12c)

κω = −Φ′′ (12d)

κsz = 2Φ′ (12e)

χz =
1

2
Φ′2 (12f)

The resulting strains can be obtained from Eqs.(9) and (11) as

ǫz = ǫ◦z + (x+ n sin θ)κy + (y − n cos θ)κx + (ω − nq)κω + (2rn+ n2)χz (13a)

γsz = (n+
F

2t
)κsz (13b)

III. VARIATIONAL FORMULATION

Total potential energy of the system is calculated by sum of strain energy and the work done by external forces

Π = U + V (14)

where U is the strain energy

U =
1

2

∫

v

(σzǫz + σszγsz)dv (15)

The variation of strain energy is calculated by substituting Eq.(13) into Eq.(15)

δU =

∫

v

{

σz

[

δǫ◦z + (x + n sin θ)δκy + (y − n cos θ)δκx + (ω − nq)δκω + (2rn+ n2)δχz

]

+ σsz(n+
F

2t
)δκsz

}

dv

=

∫ l

0

(Nzδǫ
◦
z +Myδκy +Mxδκx +Mωδκω +Mtδκsz +Rzδχz)ds (16)
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where Nz,Mx,My,Mω,Mt, Rz are axial force, bending moments in the x and y directions, warping moment (bi-

moment), torsional moment and high order stress resultant with respect to the centroid respectively, defined by

integrating over the cross-sectional area A as

Nz =

∫

A

σzdsdn (17a)

My =

∫

A

σz(x+ n sin θ)dsdn (17b)

Mx =

∫

A

σz(y − n cos θ)dsdn (17c)

Mω =

∫

A

σz(ω − nq)dsdn (17d)

Mt =

∫

A

σsz(n+
F

2t
)dsdn (17e)

Rz =

∫

A

σz(2rn+ n2)dsdn (17f)

After substituting Eqs.(12) and (13) into Eq.(16), the variation of the strain energy can be obtained

δU =

∫ l

0

[

NzδW
′ −MyδU

′′ −MxδV
′′ −MωδΦ

′′ + 2MtδΦ
′ +Nz(U

′δU ′ + V ′δV ′)

+ (My − xpNz)(V
′δΦ′ + Φ′δV ′) − (Mx − ypNz)(U

′δΦ′ + Φ′δU ′) + (r2pNz +Rz)Φ
′δΦ′

]

dz (18)

On the other hand, the variation of work done by external forces can be written as

δV = −

∫

v

(pzδw + pnδu+ psδv)dv (19)

where pz, pn, ps are forces acting in z, n and s direction. The above expression can be written with respect to the

shell forces and displacements by using Eq.(6)

δV = −

∫

s

∫ l

0

(p̄zδw̄ + p̄nδn̄+ p̄sδv̄ − m̄z

∂δū

∂z
− m̄s

∂δū

∂s
)dsdz (20)

where p̄z, p̄s, m̄z, m̄s, p̄n are shell forces defined by

(p̄z, m̄z) =

∫

n

pz(1, n)dn (21a)

(p̄s, m̄s) =

∫

n

ps(1, n)dn (21b)

p̄n =

∫

n

pndn (21c)

After substituting Eqs.(1) and (4) into Eq.(20), the variation of the work done by the external forces can be written

with respect to the bar forces

δV = −

∫ l

0

[PzδW + VxδU + MyδU
′ + VyδV + MxδV

′ + T δΦ + MωδΦ
′]dz (22)
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where the bar forces are related to the shell forces as

Pz =

∫

s

p̄zds (23a)

Vy =

∫

s

(p̄s sin θ − p̄n cos θ)ds (23b)

Vx =

∫

s

(p̄s cos θ + p̄n sin θ)ds (23c)

T =

∫

s

(p̄sr − p̄nq + m̄s)ds (23d)

My =

∫

s

(m̄z sin θ − p̄zx)ds (23e)

Mx =

∫

s

(m̄z cos θ − p̄zy)ds (23f)

Mω =

∫

s

(m̄zq − p̄zω)ds (23g)

Principle of total potential energy can be stated as

0 = δΠ = δU + δV (24)

Substituting Eqs.(18) and (22) into Eq.(24), the weak form of the present theory for thin-walled composite beams are

given by

0 =

∫ l

0

[

NzδW
′ −MyδU

′′ −MxδV
′′ −MωδΦ

′′ + 2MtδΦ
′ +Nz(U

′δU ′ + V ′δV ′)

+ (My − xpNz)(V
′δΦ′ + Φ′δV ′) − (Mx − ypNz)(U

′δΦ′ + Φ′δU ′) + (r2pNz +Rz)Φ
′δΦ′

− PzδW − VxδU −MyδU
′ − VyδV −MxδV

′ − T δΦ −MωδΦ
′
]

dz (25)

IV. CONSTITUTIVE EQUATIONS

The constitutive equations of a kth orthotropic lamina in the laminate co-ordinate system are given by
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σsz
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Q̄∗
11

Q̄∗
16

Q̄∗
16

Q̄∗
66
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ǫz

γsz











(26)

where Q̄∗
ij are transformed reduced stiffnesses. The transformed reduced stiffnesses can be calculated from the

transformed stiffnesses based on the plane stress (σs = 0) and plane strain (ǫs = 0) assumption. More detailed

explanation can be found in Ref.[23].
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The constitutive equations for bar forces and bar strains are obtained by using Eqs.(13), (17) and (26)
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(27)

where Eij are stiffnesses of the thin-walled composite, and can be defined by

E11 =

∫

s

A11ds (28a)

E12 =

∫

s

(A11x+B11 sin θ)ds (28b)

E13 =

∫

s

(A11y − B11 cos θ)ds (28c)

E14 =

∫

s

(A11ω −B11q)ds (28d)

E15 =

∫

s

(A16

F

2t
+B16)ds (28e)

E16 =

∫

s

(2B11r +D11)ds (28f)

E22 =

∫

s

(A11x
2 + 2B11x sin θ +D11 sin2 θ)ds (28g)

E23 =

∫

s

[

A11xy +B11(y sin θ − x cos θ) −D11 sin θ cos θ
]

ds (28h)

E24 =

∫

s

[

A11xω +B11(ω sin θ − qx) −D11q sin θ
]

ds (28i)

E25 =

∫

s

[

A16

F

2t
x+B16(x+

F sin θ

2t
) +D16 sin θ

]

ds (28j)

E26 =

∫

s

[

2B11rx +D11(x+ 2r sin θ) + F11 sin θ
]

ds (28k)

E33 =

∫

s

(A11y
2 − 2B11y cos θ +D11 cos2 θ)ds (28l)

E34 =

∫

s

[

A11yω −B11(ω cos θ + qy) +D11q cos θ
]

ds (28m)

E35 =

∫

s

[

A16

F

2t
y +B16(y −

F cos θ

2t
) −D16 cos θ

]

ds (28n)

E36 =

∫

s

[

2B11ry +D11(y − 2r cos θ) − F11 cos θ
]

ds (28o)

E44 =

∫

s

(A11ω
2 − 2B11ωq +D11q

2)ds (28p)

E45 =

∫

s

[

A16

F

2t
ω +B16(ω −

Fq

2t
) −D16q

]

ds (28q)

E46 =

∫

s

[

2B11rω +D11(ω − 2rq) − F11q
]

ds (28r)



10

E55 =

∫

s

(A66

F 2

4t2
+B66

F

t
+D66)ds (28s)

E56 =

∫

s

[

2B16r
F

2t
+D16(

F

2t
+ 2r) − F16

]

ds (28t)

E66 =

∫

s

(4D11r
2 + 4rF11 +H11)ds (28u)

where Aij , Bij , Dij matrices are extensional, coupling, bending stiffness and Fij , Hij matrices are higher order stiff-

nesses, respectively, defined by

(Aij , Bij , Dij , Fij , Hij) =

∫

Q̄ij(1, n, n
2, n3, n4)dn (29)

It appears that the laminate stiffnesses Eij depend on the cross section of the composite beam. The explicit forms of

the laminate stiffnesses Eij for composite box section are given in the Appendix A.

V. GOVERNING EQUATIONS

The nonlinear equilibrium equations of the present study can be obtained by integrating the derivatives of the

varied quantities by parts and collecting the coefficients of δW, δU, δV and δΦ

N ′
z + Pz = 0 (30a)

M ′′
y + [Nz(U

′ + ypΦ
′)]′ − [MxΦ′]′ + Vx −M′

y = 0 (30b)

M ′′
x + [Nz(V

′ − xpΦ
′)]′ + [MyΦ

′]′ + Vy −M′
x = 0 (30c)

M ′′
ω + 2M ′

t + [Nz(r
2

pΦ′ + ypU
′ − xpV

′)]′ + [MyV
′]′ − [MxU

′]′ + [RzΦ
′]′ + T −M′

ω = 0 (30d)

The natural boundary conditions are of the form

δW : Nz (31a)

δU : M ′
y +Nz(U

′ + ypΦ
′) −MxΦ′ (31b)

δU ′ : My (31c)

δV : M ′
x +Nz(V

′ − xpΦ
′) +MyΦ

′ (31d)

δV ′ : Mx (31e)

δΦ : M ′
ω + 2Mt +Nz(r

2

pΦ′ + ypU
′ − xpV

′) +MyV
′ −MxU

′ +RzΦ
′ (31f)

δΦ′ : Mω (31g)
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The 7th denotes the warping restraint boundary condition. When the warping of the cross section is restrained,

Φ′ = 0 and when the warping is not restrained (free warping), Mω = 0. Eq.(30) is the general nonlinear equilibrium

equations. In general, moment loads are not considered in the analysis (Mx = My = Mω = 0).

By substituting Eqs.(12) and (27) into Eq.(30), the explicit form of the governing equations can be expressed with

respect to the laminate stiffnesses Eij as

[

E11

[

W ′ +
1

2

[

U ′2 + V ′2 + (r2 + q2)Φ′2
]

− xpV
′Φ′ + ypU

′Φ′

]

− E12(U
′′ − V ′Φ′)

−E13(V
′′ + U ′Φ′) − E14Φ

′′′ + 2E15Φ
′′ +

1

2
E16Φ

′2

]′

+ Pz = 0 (32a)

[

E12

[

W ′ +
1

2

[

U ′2 + V ′2 + (r2 + q2)Φ′2
]

− xpV
′Φ′ + ypU

′Φ′

]

− E22(U
′′ − V ′Φ′)

−E23(V
′′ + U ′Φ′) − E24Φ

′′ + 2E25Φ
′′ +

1

2
E26Φ

′2

]′′

+

{[

E11

[

W ′ +
1

2

[

U ′2 + V ′2 + (r2 + q2)Φ′2
]

− xpV
′Φ′ + ypU

′Φ′

]

− E12(U
′′ − V ′Φ′)

−E13(V
′′ + U ′Φ′) − E14Φ

′′ + 2E15Φ
′′ +

1

2
E16Φ

′2

]

(U ′ + ypΦ
′)

}′

−

{[

E13

[

W ′ +
1

2

[

U ′2 + V ′2 + (r2 + q2)Φ′2
]

− xpV
′Φ′ + ypU

′Φ′

]

− E23(U
′′ − V ′Φ′)

−E33(V
′′ + U ′Φ′) − E34Φ

′′ + 2E35Φ
′′ +

1

2
E36Φ

′2

]

Φ′

}′

+ Vx = 0 (32b)

[

E13

[

W ′ +
1

2

[

U ′2 + V ′2 + (r2 + q2)Φ′2
]

− xpV
′Φ′ + ypU

′Φ′

]

− E23(U
′′ − V ′Φ′)

−E33(V
′′ + U ′Φ′) − E34Φ

′′ + 2E35Φ
′′ +

1

2
E36Φ

′2

]′′

+

{[

E11

[

W ′ +
1

2

[

U ′2 + V ′2 + (r2 + q2)Φ′2
]

− xpV
′Φ′ + ypU

′Φ′

]

− E12(U
′′ − V ′Φ′)

−E13(V
′′ + U ′Φ′) − E14Φ

′′ + 2E15Φ
′′ +

1

2
E16Φ

′2

]

(V ′ − xpΦ
′)

}′

+

{[

E12

[

W ′ +
1

2

[

U ′2 + V ′2 + (r2 + q2)Φ′2
]

− xpV
′Φ′ + ypU

′Φ′

]

− E22(U
′′ − V ′Φ′)

−E23(V
′′ + U ′Φ′) − E24Φ

′′ + 2E25Φ
′′ +

1

2
E26Φ

′2

]

Φ′

}′

+ Vy = 0 (32c)

[

E14

[

W ′ +
1

2

[

U ′2 + V ′2 + (r2 + q2)Φ′2
]

− xpV
′Φ′ + ypU

′Φ′

]

− E24(U
′′ − V ′Φ′)

−E34(V
′′ + U ′Φ′) − E44Φ

′′ + 2E45Φ
′′ +

1

2
E46Φ

′2

]′′
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+2

[

E15

[

W ′ +
1

2

[

U ′2 + V ′2 + (r2 + q2)Φ′2
]

− xpV
′Φ′ + ypU

′Φ′

]

− E25(U
′′ − V ′Φ′)

−E35(V
′′ + U ′Φ′) − E45Φ

′′ + 2E55Φ
′′ +

1

2
E56Φ

′2

]′

+

{[

E11

[

W ′ +
1

2

[

U ′2 + V ′2 + (r2 + q2)Φ′2
]

− xpV
′Φ′ + ypU

′Φ′

]

− E12(U
′′ − V ′Φ′)

−E13(V
′′ + U ′Φ′) − E14Φ

′′ + 2E15Φ
′′ +

1

2
E16Φ

′2

]

(r2pΦ′ + ypU
′ − xpV

′)

}′

+

{[

E12

[

W ′ +
1

2

[

U ′2 + V ′2 + (r2 + q2)Φ′2
]

− xpV
′Φ′ + ypU

′Φ′

]

− E22(U
′′ − V ′Φ′)

−E23(V
′′ + U ′Φ′) − E24Φ

′′ + 2E25Φ
′′ +

1

2
E26Φ

′2

]

V ′

}′

−

{[

E13

[

W ′ +
1

2

[

U ′2 + V ′2 + (r2 + q2)Φ′2
]

− xpV
′Φ′ + ypU

′Φ′

]

− E23(U
′′ − V ′Φ′)

−E33(V
′′ + U ′Φ′) − E34Φ

′′ + 2E35Φ
′′ +

1

2
E36Φ

′2

]

U ′

}′

+

{[

E16

[

W ′ +
1

2

[

U ′2 + V ′2 + (r2 + q2)Φ′2
]

− xpV
′Φ′ + ypU

′Φ′

]

− E26(U
′′ − V ′Φ′)

−E36(V
′′ + U ′Φ′) − E46Φ

′′ + 2E56Φ
′′ +

1

2
E66Φ

′2

]

Φ′

}′

+ T = 0 (32d)

Eq.(32) is most general form for axial-flexural-torsional behavior of a thin-walled composite beam, and the dependent

variables W , U , V and Φ are fully coupled.

VI. FINITE ELEMENT FORMULATION

The present theory for thin-walled composite beams described in the previous section was implemented via a

displacement based finite element method. The generalized displacements are expressed over each element as a com-

bination of the one-dimensional linear Lagrange interpolation function Ψj and Hermite-cubic interpolation function

ψj associated with node j and the nodal values

W =

2
∑

j=1

wjΨj (33a)

U =
4

∑

j=1

ujψj (33b)

V =

4
∑

j=1

vjψj (33c)
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Φ =
4

∑

j=1

φjψj (33d)

Substituting these expressions into the weak statement in Eq.(25), the finite element model of a typical element

can be expressed as

[

K({∆})
]

{∆} = {f} (34)

The direct stiffness coefficients Kαβ
ij = (Kαβ

ij )L + (Kαβ
ij )N are defined in the Appendix B. The nonlinear algebraic

equations of present theory can be linearized using Newton−Raphson iterative method. Solution of Eq.(34) by the

Newton−Raphson iteration method results in the following linearized equations for the incremental solution at the

rth iteration (Bathe [24])

[

T ({∆}r−1)
]

{δ∆} = −{R({∆}r−1)} (35)

where the tangent stiffness matrix is calculated using the definition

[

T ({∆}r−1)
]

≡
(∂{R}

∂{∆}

)r−1

(36)

The residual vector vector after the (r − 1)th iteration is given by

{R({∆}r−1)} = [K({∆}r−1)]{∆}r−1 − {f} (37)

The solution at the rth iteration is then given by

{∆}r = {∆}r−1 + {δ∆} (38)

The details of the direct stiffness matrix are given in the Appendix B. In Eq.(34), {∆} is the unknown nodal

displacements

{∆} = {W U V Φ}T (39)

VII. NUMERICAL EXAMPLES

Throughout numerical examples, a tolerance of ǫ = 10−3 and maximum allowable iterations of 20 (per load step) are

used to check for convergence of nodal displacements in the Newton−Raphson iteration scheme. The initial solution
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vector is chosen to be the zero vector, so that the first iteration solution corresponds to the linear solution. The

results of the present analysis are given for both the linear and nonlinear case.

For verification purpose, a cantilever composite box beam with geometry and stacking sequence shown in Fig.2

under a tip vertical load of 1.78 kN is analyzed. The lamination of this beam consists of eight laminae of equal

thickness as follows: [0/ − θ2/90]s at the lower flange, [0/θ2/90]s at the upper flange and [(0/90)2]s at both webs,

respectively. The analysis is carried out assuming both plane stress (σs = 0) and plane strain (ǫs = 0) assumptions.

The following material properties are used (Stemple and Lee [12])

E1 = 146.78GPa , E2 = 10.3GPa , G12 = 6.2GPa , ν12 = 0.28 (40)

The vertical displacement and the angle of twist at the tip of the beam are plotted in Figs.3 and 4 with respect to

fiber angle variation. It is shown that the vertical displacement more than doubles when fiber angle is varied from

θ = 0◦ to θ = 90◦. It seems that the solutions in Stemple and Lee [12] and Kalfon and Rand [14] were calculated

by using plane strain assumption. The axial and horizontal displacements with respect to fiber angle change are

illustrated in Figs.5 and 6. These responses are due to coupling-induced geometrical nonlinear effect, which are not

present in the linear analysis. The maximum coupling of this type is shown to be near fiber angle θ = 30◦. The

accuracy of the predictions from present model with Stemple and Lee [12] and Kalfon and Rand [14] can be seen. The

proposed model agrees well with previously available results and can capture exactly all the geometrical nonlinear

response of composite beam.

A pinned-hinged composite box beam of length L = 8m under an eccentric uniform load q acting at the midplane

of the left web is considered in order to investigate the effect of the load parameter and fiber orientation on the

displacements. It is noted earlier by Lee [21,25] that the results based on the plane stress assumption (σs = 0) yield

better agreement with ABAQUS solution. For this reason, plane stress assumption (σs = 0) is used in numerical

computation. The geometry and stacking sequence of the composite box beam is shown in Fig.7, and the following

engineering constants are used

E1/E2 = 25, G12/E2 = 0.6, ν12 = 0.25 (41)

For convenience, the following nondimensional values of the axial, vertical displacement, and load parameter are
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used

w =
w

b1
(42a)

v =
v

b1
(42b)

q =
qL4

E1b31t1
(42c)

Stacking sequence of this beam consists of two layers with equal thickness as follows: [θ]2 at top flange and right

web, [−θ]2 at left web and bottom flange, respectively (Fig.7). For this lay-up, most coupling stiffnesses become zero,

but E16, E25 and E35 do not vanish due to unsymmetric stacking sequence of the webs and flanges. Accordingly, this

beam sustains simultaneously two kinds of couplings from material anisotropy and geometric nonlinearity.

As the first example, the stacking sequence at two specific fiber angle θ = 45◦, 90◦ is considered to investigate the

effects of load parameter on the displacements in the high nonlinear region. It should be noted that for θ = 90◦,

all the coupling stiffness vanish, that is, only geometrical nonlinear effect exists. The load increment of ∆q̄ = 0.05

is employed until the first critical point is reached. Figs.8 and 9 show the load versus vertical displacement and the

load versus torsional displacement at two fiber angles. It is evident that the linear theory is adequate in a relatively

large region up to the point where an applied load reaches value of q̄ = 2 and 4 for fiber angle θ = 90◦ and 45◦,

respectively. When comparing with linear analysis, all the nonlinear displacements increase with increasing value of

the load, except for the vertical displacement. This is due to the fact that the geometrical nonlinear effect causes

axial-flexural-torsional coupling which results in an increase in the flexural stiffness and a decrease in the torsional

stiffness of the beam. The effect of the geometric nonlinearity is apparent with increasing load intensity. The highest

load of fiber angle θ = 90◦ is smaller than that of θ = 45◦. At this load, for θ = 45◦, the nonlinear vertical and

torsional displacement is about 85% and 325% of the linear value, respectively. It is from Fig.10 that highlights the

influence of geometrical nonlinear effect on the axial displacement of beam. This response is never seen in linear

analysis because the coupling terms are not present. It implies that the structure under eccentric transverse load not

only causes transverse displacement and angle of twist as would be observed in linear case, but also causes additional

response due solely to geometric nonlinearity never seen in linear case.

To investigate the geometrical nonlinear effect further, the same configuration with the previous example except

the load and the laminate stacking sequence is considered. A constant applied load is analyzed while the fiber angle is

rotated in the webs and flanges. Based on previous numerical example, an applied load q̄ = 5.0 is chosen to show effect

of fiber orientation on the axial-flexural-torsional response. Variation of the axial, vertical displacements with respect

to fiber angle variation are plotted in Fig.11. As expected, no linear axial displacement w̄ is seen for all fiber angle.



16

For fiber angles less than θ = 30◦, the vertical displacement of linear and nonlinear analysis coincides. Especially, in

Fig.12, the angle of twist of two analyses shows the same tendency and reaches minimum value between fiber angle

θ ∈ [20◦−30◦], that is, because the torsional rigidity E55 becomes maximum value at this range. However, as the fiber

orientation is rotated off-axis, the geometrical nonlinear effect is prominent, that is, the discrepancy between the linear

and nonlinear analysis becomes significant. It is observed that the nonlinear vertical displacement are not as sensitive

as the nonlinear axial and torsional displacement when fiber angle changes. The difference between displacements

of two analyses is minimum at θ = 0◦ and reaches maximum value at θ = 90◦. This phenomenon can be explained

that the axial, flexural and torsional rigidities decrease significantly with increasing fiber angle, and thus, the relative

geometrical nonlinear effect becomes larger for higher fiber angles.

VIII. CONCLUDING REMARKS

A general geometrically nonlinear model for thin-walled composite space beams with arbitrary laminate stacking

sequences under various types of loadings has been presented by using variational formulation based on the classical

lamination theory. General nonlinear governing equations are derived from the principle of the stationary value of

total potential energy and solved by means of an incremental Newton−Raphson method. A displacement-based one-

dimensional finite element model that accounts for the geometric nonlinearity in the von Kármán sense is developed.

Numerical results are obtained to investigate the effect of geometric nonlinearity on axial-flexural-torsional response,

address the effects of fiber orientation, laminate stacking sequence and load parameter. The present model is found

to be appropriate and efficient in analyzing geometrically nonlinear behavior of thin-walled composite box beam.
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APPENDIX A

The explicit forms of the laminate stiffnesses Eij for composite box section in Fig.13 can be defined by

E16 = (−2x1 + 2xp)B
1

11
b1 +D1

11
b1 + (−2y2 + 2yp)B

2

11
b2 +D2

11
b2

+ (2x3 − 2xp)B
3

11
b1 +D3

11
b1 + (2y4 − 2yp)B

4

11
b2 +D4

11
b2 (43a)

E26 = (−2x1 + 2xp)x1B
1

11
b1 +D1

11
(3x1 − 2xp)b1 − F 1

11
b1
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+
1

2

[

(−2y2 + 2yp)B
2

11 +D2

11

]

b22 + (−2y2 + 2yp)x1B
2

11b2 +D2

11x1b2

+ (2x3 − 2xp)x3B
3

11
b1 +D3

11
(3x3 − 2xp)b1 + F 3

11
b1

+
1

2

[

(−2y4 + 2yp)B
4

11
−D4

11

]

b2
2
+ (2y4 − 2yp)x3B

4

11
b2 +D4

11
x3b2 (43b)

E36 =
1

2

[

(2x1 − 2xp)B
1

11
−D1

11

]

b2
1
+ (−2x1 + 2xp)y4B

1

11
b1 +D1

11
y4b1

+ (−2y2 + 2yp)y2B
2

11
b2 +D2

11
(3y2 − 2yp)b2 − F 2

11
b2

+
1

2

[

(2x3 − 2xp)B
3

11 +D3

11

]

b21 + (2x3 − 2xp)y2B
3

11b1 +D3

11y2b1

+ (2y4 − 2yp)y4B
4

11b2 +D4

11(3y4 − 2yp)b2 + F 4

11b2 (43c)

E46 =
1

2

[

(−2x1 + 2xp)A1B
1

11 +D1

11(A1 + 2x1 − 2xp) − F 1

11

]

b21 + (−2x1 + 2xp)CB
1

11b1

+ D1

11
(C − (−2x1 + 2xp)(−y4 + yp))b1 − F 1

11
(−y4 + yp)b1

+
1

2

[

(−2y2 + 2yp)A2B
2

11
+D2

11
(A2 + 2y2 − 2yp) − F 2

11

]

b2
2
+ (−2y2 + 2yp)(A1b1 + C)B2

11
b2

+ D2

11
(A1b1 + C − (−2y2 + 2yp)(x1 − xp))b2 − F 2

11
(x1 − xp)b2

+
1

2

[

(2x3 − 2xp)A3B
3

11
+D3

11
(A3 − 2x3 + 2xp) − F 3

11

]

b2
1
+ (2x3 − 2xp)(A1b1 +A2b2 + C)B3

11
b1

+ D3

11(−(2x3 − 2xp)(y2 − yp) +A1b1 +A2b2 + C)b1 − F 3

11(y2 − yp)b1

+
1

2

[

(2y4 − 2yp)A4B
4

11 +D4

11(A4 − 2y4 + 2yp) − F 4

11

]

b22 + (2y4 − 2yp)(C +A1b1 +A2b2 +A3b1)B
4

11b2

+ D4

11(C +A1b1 +A2b2 +A3b1 − (2y4 − 2yp)(−x3 + xp))b2 − F 4

11(−x3 + xp)b2 (43d)

E56 =
1

2
(−x1 + xp)

F

2t1
B1

16
b1 +D1

16
(
F

2t1
− 2x1 + 2xp)b1 + F 1

16
b1

+
1

2
(−y2 + yp)

F

2t2
B2

16
b2 +D1

16
(
F

2t2
− 2y2 + 2yp)b2 + F 2

16
b2

+
1

2
(x3 − xp)

F

2t3
B3

16
b1 +D3

16
(
F

2t3
+ 2x3 − 2xp)b1 + F 3

16
b1

+
1

2
(y4 − yp)

F

2t4
B4

16
b2 +D4

11
(
F

2t4
+ 2y4 − 2yp)b2 + F 4

16
b2 (43e)

E66 = (−4x1 + 4xp)(−x1 + xp)D
1

11b1 + (−4x1 + 4xp)F
1

11b1 +H1

11b1

+ (−4y2 + 4yp)(−y2 + yp)D
2

11b2 + (−4y2 + 4yp)F
2

11b2 +H2

11b2

+ (4x3 − 4xp)(x3 − xp)D
3

11b1 + (4x3 − 4xp)F
3

11b1 +H3

11b1

+ (4y4 − 4yp)(y4 − yp)D
4

11
b2 + (4y4 − 4yp)F

4

11
b2 +H4

11
b2 (43f)

where the St. Venant circuit shear flow F , constant C and other values of Eij can be found in Ref.[22].
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APPENDIX B

The element direct stiffness matrix [K] is divided into the linear terms denoted by subscript L and the nonlinear

terms denoted by subscript N , respectively.

[K] =























(K11

ij )L (K12

ij )L (K13

ij )L (K14

ij )L

(K22

ij )L (K23

ij )L (K24

ij )L

(K33

ij )L (K34

ij )L

sym. (K44

ij )L























+























(K11

ij )N (K12

ij )N (K13

ij )N (K14

ij )N

(K21

ij )N (K22

ij )N (K23

ij )N (K24

ij )N

(K31

ij )N (K32

ij )N (K33

ij )N (K34

ij )N

(K41

ij )N (K42

ij )N (K43

ij )N (K44

ij )N























(44)

Linear terms of direct stiffness matrix and the force vector are given in Ref.[22]. Nonlinear terms of direct stiffness

matrix can be expressed by

(K12

ij )N =

∫ l

0

1

2

[

E11(U
′ + ypΦ

′) − E13Φ
′
]

Ψ′
iψ

′
jdz (45a)

(K13

ij )N =

∫ l

0

1

2

[

E11(V
′ − xpΦ

′) + E12Φ
′
]

Ψ′
iψ

′
jdz (45b)

(K14

ij )N =

∫ l

0

1

2

[

E11(r
2

pΦ′ + ypU
′ − xpV

′) + E12V
′ − E13U

′ + E16Φ
′
]

Ψ′
iψ

′
jdz (45c)

(K21

ij )N = 2KN,12
ji (45d)

(K22

ij )N =

∫ l

0

1

2

[

E11(U
′ + ypΦ

′)2 − 2E13(U
′ + ypΦ

′)Φ′ + E33Φ
′2

]

ψ′
iψ

′
jdz

−

∫ l

0

[1

2

[

E12U
′′ + E13V

′′ + E14Φ
′′ − 2E15Φ

′
]

ψ′
iψ

′
j +

1

2

[

E12(U
′ + ypΦ

′) − E23Φ
′
]

(ψ′′
i ψ

′
j + ψ′

iψ
′′
j )

]

dz (45e)

(K23

ij )N =

∫ l

0

1

2

[

E11(V
′ − xpΦ

′) + E12Φ
′
]

(U ′ + ypΦ
′)ψ′

iψ
′
j −

1

2

[

E13(V
′ − xpΦ

′) + E23Φ
′
]

Φ′ψ′
iψ

′
jdz

−

∫ l

0

[1

2

[

E12(V
′ − xpΦ

′) + E22Φ
′
]

ψ′′
i ψ

′
j +

1

2

[

E13(U
′ + ypΦ

′) − E33Φ
′
]

ψ′
iψ

′′
j

]

dz (45f)

(K24

ij )N =

∫ l

0

1

2

[

(E23 − E12yp)U
′′ + (E33 − E13yp)V

′′ + (E34 − E14yp)Φ
′′
]

ψ′
iψ

′
jdz

+

∫ l

0

1

2

[

E11(r
2

pΦ′ + ypU
′ − xpV

′) + E12V
′ − E13U

′ + E16Φ
′
]

(U ′ + ypΦ
′)ψ′

iψ
′
jdz

−

∫ l

0

[1

2

[

E13(r
2

pΦ′ + ypU
′ − xpV

′) + E23V
′ − E33U

′ + E36Φ
′
]

Φ′ −
[

E15U
′ − 2(E35 − E15yp)

]

]

ψ′
iψ

′
jdz

−

∫ l

0

1

2

[

E12(r
2

pΦ′ + ypU
′ − xpV

′) + E22V
′ − E23U

′ + E26Φ
′
]

Φ′ψ′′
i ψ

′
jdz

−

∫ l

0

1

2

[

E14(U
′ + ypΦ

′) − E34Φ
′
]

ψ′
iψ

′′
j dz (45g)

(K31

ij )N = 2(K13

ji )N (45h)

(K32

ij )N = (K23

ji )N (45i)

(K33

ij )N =

∫ l

0

1

2

[

E11(V
′ − xpΦ

′)2 + 2E12(V
′ − xpΦ

′)Φ′ + E22Φ
′2

]

ψ′
iψ

′
jdz
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−

∫ l

0

[1

2

[

E12U
′′ + E13V

′′ + E14Φ
′′ − 2E15Φ

′
]

ψ′
iψ

′
j +

1

2

[

E13(V
′ − xpΦ

′) + E23Φ
′
]

(ψ′′
i ψ

′
j + ψ′

iψ
′′
j )

]

dz (45j)

(K34

ij )N =

∫ l

0

−
1

2

[

(E22 − E12xp)U
′′ + (E23 − E13xp)V

′′ + (E24 − E14xp)Φ
′′
]

ψ′
iψ

′
jdz

+

∫ l

0

1

2

[

E11(r
2

pΦ′ + ypU
′ − xpV

′) + E12V
′ − E13U

′ + E16Φ
′
]

(V ′ − xpΦ
′)ψ′

iψ
′
jdz

+

∫ l

0

[1

2

[

E12(r
2

pΦ′ + ypU
′ − xpV

′) + E22V
′ − E23U

′ + E36Φ
′
]

Φ′ +
[

E15V
′ + 2(E25 − E15xp)

]

]

ψ′
iψ

′
jdz

−

∫ l

0

1

2

[

E13(r
2

pΦ′ + ypU
′ − xpV

′) + E23V
′ − E33U

′ + E36Φ
′
]

Φ′ψ′′
i ψ

′
jdz

−

∫ l

0

1

2

[

E14(V
′ − xpΦ

′) + E24Φ
′
]

ψ′
iψ

′′
j dz (45k)

(K41

ij )N = 2(K14

ji )N (45l)

(K42

ij )N = (K24

ji )N (45m)

(K43

ij )N = (K34

ji )N (45n)

(K44

ij )N =

∫ l

0

[1

2

[

E11(r
2

pΦ′ + ypU
′ − xpV

′)2 + E22V
′2 − E33U

′2 + E66Φ
′2

]

+
[

E12(r
2

pΦ′ + ypU
′ − xpV

′)V ′
]

]

ψ′
iψ

′
jdz

+

∫ l

0

[

− E13(r
2

pΦ′ + ypU
′ − xpV

′)U ′ − E23U
′ + E16(r

2

pΦ′ + ypU
′ − xpV

′)Φ′ + E26Φ
′V ′ − E36Φ

′U ′
]

ψ′
iψ

′
jdz

−

∫ l

0

1

2

[

(E26 + E12r
2

p)U ′′ + (E36 + E13r
2

p)V ′′ + (E46 + E14r
2

p)Φ′′
]

ψ′
iψ

′
jdz

+

∫ l

0

[

2(E25 − E15xp)V
′ − 2(E35 − E15yp)U

′ + 3(E56 + E15r
2

p)Φ′
]

ψ′
iψ

′
jdz

−

∫ l

0

1

2

[

E14(r
2

pΦ′ + ypU
′ − xpV

′) + E24V
′ − E34U

′ + E46Φ
′
]

(ψ′′
i ψ

′
j + ψ′

iψ
′′
j )dz (45o)
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CAPTIONS OF FIGURES

Figure 1: Definition of coordinates and generalized displacements in thin-walled closed sections.

Figure 2: A cantilever composite box beam under a 1.78 kN tip vertical load.

Figure 3: Variation of the vertical displacement with respect to fiber angle change of a cantilever composite box

beam under a 1.78 kN tip vertical load.

Figure 4: Variation of the angle of twist with respect to fiber angle change of a cantilever composite box beam

under a 1.78 kN tip vertical load.

Figure 5: Variation of axial tip displacement with respect to fiber angle change of a cantilever composite box beam

under a 1.78 kN tip vertical load.

Figure 6: Variation of the horizontal displacement with respect to fiber angle change of a cantilever composite box

beam under a 1.78 kN tip vertical load.

Figure 7: A pinned-hinged composite box beam under an eccentric uniform load.

Figure 8: Load versus the vertical displacement at mid-span for a pinned-hinged composite box beam under an

eccentric uniform load.

Figure 9: Load versus the angle of twist at mid-span for a pinned-hinged composite box beam under an eccentric

uniform load.

Figure 10: Load versus the axial displacement at mid-span for a pinned-hinged composite box beam under an

eccentric uniform load.

Figure 11: Variation of the vertical and axial displacements at mid-span with respect to fiber angle change for a

pinned-hinged composite box beam under an eccentric uniform load.

Figure 12: Variation of the angle of twist at mid-span with respect to fiber angle change for a pinned-hinged

composite box beam under an eccentric uniform load.

Figure 13: Geometry of thin-walled composite box section.
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FIG. 1 Definition of coordinates and generalized displacements in thin-walled closed sections.
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FIG. 2 A cantilever composite box beam under a 1.78 kN tip vertical load
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FIG. 3 Variation of the vertical displacement with respect to fiber angle change of a cantilever composite box beam under a

1.78 kN tip vertical load
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FIG. 4 Variation of the angle of twist with respect to fiber angle change of a cantilever composite box beam under a 1.78 kN

tip vertical load
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FIG. 5 Variation of axial tip displacement with respect to fiber angle change of a cantilever composite box beam under a

1.78 kN tip vertical load
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FIG. 6 Variation of the horizontal displacement with respect to fiber angle change of a cantilever composite box beam under

a 1.78 kN tip vertical load
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FIG. 7 A pinned-hinged composite box beam under an eccentric uniform load
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FIG. 8 Load versus the vertical displacement at mid-span for a pinned-hinged composite box beam under an eccentric uniform

load
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FIG. 9 Load versus the angle of twist at mid-span for a pinned-hinged composite box beam under an eccentric uniform load
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FIG. 10 Load versus the axial displacement at mid-span for a pinned-hinged composite box beam under an eccentric uniform

load



33

0

5

10

15

20

0 15 30 45 60 75 90

v̄, w̄

θ

v̄, linear
v̄, nonlinear
w̄, nonlinear

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
⋆

⋆
⋆

⋆
⋆

⋆
⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆

FIG. 11 Variation of the vertical and axial displacements at mid-span with respect to fiber angle change for a pinned-hinged

composite box beam under an eccentric uniform load



34

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 15 30 45 60 75 90

φ

θ

Linear
Nonlinear

FIG. 12 Variation of the angle of twist at mid-span with respect to fiber angle change for a pinned-hinged composite box beam

under an eccentric uniform load



35

FIG. 13 Geometry of thin-walled composite box section
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