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Geometrically nonlinear theory of thin-walled composite box beams using

shear-deformable beam theory
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A general geometrically nonlinear model for thin-walled composite space beams with arbitrary

lay-ups under various types of loadings is presented. This model is based on the first-order shear

deformable beam theory, and accounts for all the structural coupling coming from both material

anisotropy and geometric nonlinearity. The nonlinear governing equations are derived and solved

by means of an incremental Newton-Raphson method. A displacement-based one-dimensional

finite element model that accounts for the geometric nonlinearity in the von Kármán sense is

developed. Numerical results are obtained for thin-walled composite box beams under vertical

load to investigate the effects of shear deformation, geometric nonlinearity and fiber orientation

on axial-flexural-torsional response.

Keywords: Thin-walled composite beams; shear deformation; axial-flexural-torsional response; nonlinear theory.

I. INTRODUCTION

Fiber-reinforced composite materials have been used over the past few decades in a variety of structures. Composites

have many desirable characteristics, such as high ratio of stiffness and strength to weight, corrosion resistance and

magnetic transparency. Thin-walled structural shapes made up of composite materials, which are usually produced

by pultrusion, are being increasingly used in many engineering fields.

The theory of thin-walled closed section members made of isotropic materials was first developed by Vlasov [1]
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and Gjelsvik [2]. A large number of practical problems require a geometrically nonlinear formulation, such as the

postbuckling behavior, load carrying capacity of structures used in aeronautical, aerospace as well as in mechanical

and civil engineering. Thin-walled composite structures are often very thin and have complicated material anisotropy.

The studies of these structures carried out so far may broadly be divided into two groups. The first and most

common approach is based on an analytical technique, while the other approach requires a two-dimensional finite

element analysis to obtain the cross-section stiffness matrix. Atilgan and Hodges et al. [3,4] pioneered the second

approach, which was referred to as the so-called ”Variational Asymptotic Beam Section Analysis” (VABS). VABS

used the variational asymptotic method (VAM) to split a three-dimensional nonlinear elasticity problem into a two-

dimensional linear cross-sectional analysis and a one-dimensional, nonlinear beam problem. Hodges and co-workers

(e.g., Cesnik et al. [5,6], Volovoi et al. [7], Yu et al. [8]) further applied the concept introduced by VAM to two

dimensional cross-sectional problem and derived closed-form expressions for the cross-sectional stiffness coefficients of

thin-walled beams. By using Atilgan and Hodges’s beam model, Jeon et al. [9] developed an analysis model of large

deflection for the static and dynamic analysis of composite box beams.

In the present investigation, an analytical approach is adopted for the derivation of the cross-sectional stiffness

matrix considering different effects and their coupling to yield a general formulation. Bauld and Tzeng [10] presented

nonlinear model for thin-walled composite beams by extending Gjelsvik’s formulation to the balanced symmetric

laminated composite materials. However, the formulation was somewhat not consistent in the sense that it used

coordinate mapping when developing nonlinear stresses instead of variational formulation. A finite element formulation

was developed by Stemple and Lee [11,12] to take into account the warping effect of composite beams undergoing

large deflection or finite rotation. Kalfon and Rand [13] derived the nonlinear theoretical modeling of laminated

thin-walled composite helicopter rotor blades. The derivation was based on nonlinear geometry with a detailed

treatment of the body loads in the axial direction which were induced by the rotation. Pai and Nayfeh [14] developed

a fully nonlinear theory of curved and twisted composite rotor blades. The theory accounted for warping due to

bending, extensional, shearing and torsional loadings, and three-dimensional stress effects by using the results of a

two-dimensional, static, sectional, finite element analysis. Bhaskar and Librescu et al. [15,16] developed non-linear

theory of thin-walled composite beams, which was employed in a broad field of engineering problems. In this model,

the transverse shear deformation was taken into account but the warping torsion component was neglected. Special

attention deserved the works of Machado, Cortinez and Piovan [17-19] who introduced a geometrically non-linear

theory for thin-walled composite beams for both open and closed cross-sections and took into account shear flexibility
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(bending and warping shear). This non-linear formulation was developed by using a non-linear displacement field,

whose rotations were based on the rule of semi-tangential transformation. It was used for analyzing the stability

of thin-walled composite beams with general cross-section. By using a geometrically higher-order non-linear beam

theory, Machado [19] investigated the influence of large rotations on the buckling and free vibration behavior of thin-

walled composite beam. However, it was strictly valid for symmetric balanced laminates and especially orthotropic

laminates. Recently, Sapountzakis and Panagos [20] introduced the non-linear analysis of a composite Timoshenko

beam with arbitrary variable cross section undergoing moderate large deflections by employing the analog equation

method (AEM), a BEM-based method.

In this paper, which is an extension of the authors’ previous works [21-25], a geometrically nonlinear model for thin-

walled composite beams with arbitrary lay-ups under various types of loadings is presented. This model is based on

the first-order shear deformable beam theory, and accounts for all the structural coupling coming from both material

anisotropy and geometric nonlinearity. The general nonlinear governing equations are derived and solved by means of

an incremental Newton-Raphson method. A displacement-based one-dimensional finite element model that accounts

for the geometric nonlinearity in the von Kármán sense is developed. Numerical results are obtained for thin-walled

composite box beam under vertical load to investigate the effects of shear deformation, geometric nonlinearity, fiber

orientation, laminate stacking sequence and load parameter on axial-flexural-torsional response.

II. KINEMATICS

The theoretical developments presented in this paper require two sets of coordinate systems which are mutually

interrelated. The first coordinate system is the orthogonal Cartesian coordinate system (x, y, z), for which the x and

y axes lie in the plane of the cross section and the z axis parallel to the longitudinal axis of the beam. The second

coordinate system is the local plate coordinate (n, s, z) as shown in Fig.1, wherein the n axis is normal to the middle

surface of a plate element, the s axis is tangent to the middle surface and is directed along the contour line of the

cross section. The (n, s, z) and (x, y, z) coordinate systems are related through an angle of orientation θ. As defined

in Fig.1 a point P , called the pole, is placed at an arbitrary point xp, yp. A line through P parallel to the z axis is

called the pole axis.

To derive the analytical model for a thin-walled composite beam, the following assumptions are made

1. The contour of the thin wall does not deform in its own plane.
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2. Transverse shear strains γ◦xz, γ
◦
yz and warping shear γ◦ω are incorporated. It is assumed that they are uniform

over the cross-sections.

3. The linear shear strain γ̄sz of the middle surface is to have the same distribution in the contour direction as it

does in the St. Venant torsion in each element.

According to assumption 1, the midsurface displacement components ū, v̄ at a point A in the contour coordinate

system can be expressed in terms of a displacements U, V of the pole P in the x, y directions, respectively, and the

rotation angle Φ about the pole axis

ū(s, z) = U(z) sin θ(s) − V (z) cos θ(s) − Φ(z)q(s) (1a)

v̄(s, z) = U(z) cos θ(s) + V (z) sin θ(s) + Φ(z)r(s) (1b)

These equations apply to the whole contour. The out-of-plane shell displacement w̄ can now be found from the

assumption 2. For each element of middle surface, the midsurface shear strains in the contour can be expressed with

respect to the transverse shear and the warping shear strains

γ̄nz(s, z) = γ◦xz(z) sin θ(s) − γ◦yz(z) cos θ(s) + γ◦ω(z)q(s) (2a)

γ̄sz(s, z) = γ◦xz(z) cos θ(s) + γ◦yz(z) sin θ(s) − γ◦ω(z)r(s) −
[
γ◦ω(z) − Φ′(z)

]F (s)

t(s)
(2b)

where t(s) is the thickness of contour box section, F (s) is the St. Venant circuit shear flow. Further, it is assumed

that midsurface shear strain in s− n direction is zero (γ̄sn = 0). From the definition of the shear strain, γ̄sz can also

be given for each element of middle surface as

γ̄sz(s, z) =
∂v̄

∂z
+
∂w̄

∂s
(3)

After substituting for v̄ from Eq.(1) into Eq.(3) and considering the following geometric relations

dx = ds cos θ (4a)

dy = ds sin θ (4b)

Displacement w̄ can be integrated with respect to s from the origin to an arbitrary point on the contour

w̄(s, z) = W (z) + Ψy(z)x(s) + Ψx(z)y(s) + Ψω(z)ω(s) (5)
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where Ψx,Ψy and Ψω represent rotations of the cross section with respect to x, y and ω, respectively, given by

Ψy = γ◦xz(z) − U ′ (6a)

Ψx = γ◦yz(z) − V ′ (6b)

Ψω = γ◦ω(z) − Φ′ (6c)

When the transverse shear effect is ignored, Eq.(6) degenerates to Ψy = −U ′, Ψx = −V ′ and Ψω = −Φ′, and as a

result, the number of unknown variables reduces to four leading to the Euler-Bernoulli beam model. The prime (′) is

used to indicate differentiation with respect to z; and ω is the so-called sectorial coordinate or warping function given

by

ω(s) =

∫ s

s◦

[
r(s) −

F (s)

t(s)

]
ds (7a)

∮

i

F (s)

t(s)
ds = 2Ai i = 1, ..., n (7b)

where r(s) is height of a triangle with the base ds; Ai is the area circumscribed by the contour of the i circuit. The

explicit forms of ω(s), F (s) for box section are given in the Appendix of Ref.[22].

The displacement components u, v, w representing the deformation of any generic point on the profile section are

given with respect to the midsurface displacements ū, v̄, w̄ by assuming the first order variation of inplane displacements

v, w through the thickness of the contour as

u(s, z, n) = ū(s, z) (8a)

v(s, z, n) = v̄(s, z) + nψ̄s(s, z) (8b)

w(s, z, n) = w̄(s, z) + nψ̄z(s, z) (8c)

where, ψ̄s and ψ̄z denote the rotations of a transverse normal about the z and s axis, respectively. These functions

can be determined by considering that the midsurface shear strains γnz is given by definition

γ̄nz(s, z) =
∂w̄

∂n
+
∂ū

∂z
(9)

By comparing Eq.(2) and (9), the function can ψ̄z can be written as

ψ̄z = Ψy sin θ − Ψx cos θ − Ψωq (10)

Similarly, using the assumption that the shear strain γsn should vanish at midsurface, the function ψ̄s can be obtained

ψ̄s = −
∂ū

∂s
(11)
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The von Kármán type strains, in which only the products of u, v, and their derivatives are retained and all other

nonlinear terms are neglected are given by

ǫz(s, z, n) =
∂w

∂z
+

1

2

[(∂u
∂z

)2
+

(∂v
∂z

)2
]

(12a)

γsz(s, z, n) =
∂v

∂z
+
∂w

∂s
(12b)

γnz(s, z, n) =
∂w

∂n
+
∂u

∂z
(12c)

By substituting Eqs.(1), (5) and (8) into Eq.(12), and using the following relations

x− xp = q cos θ + r sin θ (13a)

y − yp = q sin θ − r cos θ (13b)

Eq.(12) can be rewritten as

ǫz = ǭz + nκ̄z + n2χ̄z (14a)

γsz = γ̄sz + nκ̄sz (14b)

γnz = γ̄nz + nκ̄nz (14c)

where

ǭz =
∂w̄

∂z
+

1

2

[(∂ū
∂z

)2
+

(∂v̄
∂z

)2
]

(15a)

κ̄z = −
∂2ū

∂z2
− 2

∂2ū

∂s∂z

∂v̄

∂z
(15b)

κ̄sz = −2
∂2ū

∂s∂z
(15c)

χ̄z =
( ∂2ū

∂s∂z

)2

(15d)

In Eq.(15), ǭz, κ̄z, κ̄sz and χ̄z are midsurface axial strain and biaxial curvature of the shell, respectively. The above

shell strains can be converted to beam strain components by substituting Eqs.(1), (5) and (8) into Eq.(15) as

ǭz = ǫ◦z + xκy + yκx + ωκω (16a)

κ̄z = κy sin θ − κx cos θ − κωq + 2χzr (16b)

κ̄sz = κsz (16c)

χ̄z = χz (16d)
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where ǫ◦z, κx, κy, κω, κsz and χz are axial strain, biaxial curvatures in the x and y direction, warping curvature with

respect to the shear center, twisting and high order curvature in the beam, respectively defined as

ǫ◦z = W ′ +
1

2

[
U ′2 + V ′2 + (r2 + q2)Φ′2

]
− xpV

′Φ′ + ypU
′Φ′ (17a)

κx = Ψ′
x − U ′Φ′ (17b)

κy = Ψ′
y + V ′Φ′ (17c)

κω = Ψ′
ω (17d)

κsz = Φ′ − Ψω (17e)

χz =
1

2
Φ′2 (17f)

The resulting strains can be obtained from Eqs.(14) and (16) as

ǫz = ǫ◦z + (x+ n sin θ)κy + (y − n cos θ)κx + (ω − nq)κω + (2rn+ n2)χz (18a)

γsz = γ◦xz cos θ + γ◦yz sin θ + γ◦ω(r −
F

2t
) + κsz(n+

F

2t
) (18b)

γnz = γ◦xz sin θ − γ◦yz cos θ − γ◦ωq (18c)

III. VARIATIONAL FORMULATION

Total potential energy of the system is calculated by sum of strain energy and potential energy

Π = U + V (19)

where U is the strain energy

U =
1

2

∫

v

(σzǫz + σszγsz + σnzγsz)dv (20)

The strain energy is calculated by substituting Eq.(18) into Eq.(20)

U =
1

2

∫

v

{
σz

[
ǫ◦z + (x + n sin θ)κy + (y − n cos θ)κx + (ω − nq)κω + (2rn+ n2)χz

]

+ σsz

[
γ◦xz cos θ + γ◦yz sin θ + γ◦ω(r −

F

2t
) + κsz(n+

F

2t
)
]

+ σnz

[
γ◦xz sin θ − γ◦yz cos θ − γ◦ωq

]}
dv (21)

The variation of the strain energy, Eq.(21), can be stated as

δU =

∫ l

0

(Nzδǫz +Myδκy +Mxδκx +Mωδκω + Vxδγ
◦
xz + Vyδγ

◦
yz + Tδγ◦ω +Mtδκsz +Rzδχz)ds (22)
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whereNz,Mx,My,Mω, Vx, Vy, T,Mt, Rz are axial force, bending moments in the x and y directions, warping moment

(bimoment), shear force in the x and y directions, warping torque, torsional moment and the high order stress resultant

with respect to the centroid respectively, defined by integrating over the cross-sectional area A as

Nz =

∫

A

σzdsdn (23a)

My =

∫

A

σz(x+ n sin θ)dsdn (23b)

Mx =

∫

A

σz(y − n cos θ)dsdn (23c)

Mω =

∫

A

σz(ω − nq)dsdn (23d)

Vx =

∫

A

(σsz cos θ + σnz sin θ)dsdn (23e)

Vy =

∫

A

(σsz sin θ − σnz cos θ)dsdn (23f)

T =

∫

A

[
σsz(r −

F

2t
) − σnzq

]
dsdn (23g)

Mt =

∫

A

σsz(n+
F

2t
)dsdn (23h)

Rz =

∫

A

σz(2rn+ n2)dsdn (23i)

The variation of the strain energy can be obtained by substituting Eqs.(17) and (18) into Eq.(22)

δU =

∫ l

0

[
NzδW

′ +MyδΨ
′
y +MxδΨ

′
x +MωδΨ

′
ω + Vxδ(U

′ + Ψy) + Vyδ(V
′ + Ψx)

+ Tδ(Φ′ + Ψω) +Mtδ(Φ
′ − Ψω) +Nz(U

′δU ′ + V ′δV ′)

+ (My − xpNz)(V
′δΦ′ + Φ′δV ′) − (Mx − ypNz)(U

′δΦ′ + Φ′δU ′) + (r2pNz +Rz)Φ
′δΦ′

]
dz (24)

On the other hand, the variation of work done by external forces can be written as

δV = −

∫

v

(pzδw + pnδu+ psδv)dv (25)

where pz, pn, ps are forces acting in z, n and s direction. The above expression can be written with respect to the

shell forces and displacements by using Eq.(8)

δV = −

∫ l

0

∫

s

(p̄zδw̄ + p̄nδū+ p̄sδv̄ + m̄zψ̄z + m̄sψ̄s)dsdz (26)

where p̄z, p̄s, m̄z, m̄s, p̄n are shell forces defined by

(p̄z, m̄z) =

∫

n

pz(1, n)dn (27a)

(p̄s, m̄s) =

∫

n

ps(1, n)dn (27b)

p̄n =

∫

n

pndn (27c)
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After substituting Eqs.(1) and (5) into Eq.(26), the variation of the work done by the external forces can be written

with respect to the bar forces

δV = −

∫ l

0

[PzδW + VxδU + MyδΨy + VyδV + MxδΨx + T δΦ + MωδΨω]dz (28)

where the bar forces are related to the shell forces as

Pz =

∫

s

p̄zds (29a)

Vy =

∫

s

(p̄s sin θ − p̄n cos θ)ds (29b)

Vx =

∫

s

(p̄s cos θ + p̄n sin θ)ds (29c)

T =

∫

s

(p̄sr − p̄nq + m̄s)ds (29d)

My =

∫

s

(m̄z sin θ + p̄zx)ds (29e)

Mx =

∫

s

(−m̄z cos θ + p̄zy)ds (29f)

Mω =

∫

s

(−m̄zq + p̄zω)ds (29g)

Using the principle that the variation of the total potential energy is zero, the weak form of the present theory for

thin-walled composite beams is given by

0 =

∫ l

0

[
NzδW

′ +MyδΨ
′
y +MxδΨ

′
x +MωδΨ

′
ω + Vxδ(U

′ + Ψy) + Vyδ(V
′ + Ψx)

+ Tδ(Φ′ + Ψω) +Mtδ(Φ
′ − Ψω) +Nz(U

′δU ′ + V ′δV ′)

+ (My − xpNz)(V
′δΦ′ + Φ′δV ′) − (Mx − ypNz)(U

′δΦ′ + Φ′δU ′) + (r2pNz +Rz)Φ
′δΦ′

− PzδW − VxδU −MyδΨy − VyδV −MxδΨx − T δΦ −MωδΨω

]
dz (30)

IV. CONSTITUTIVE EQUATIONS

The constitutive equations of a kth orthotropic lamina in the laminate co-ordinate system of section are given by






σz

σsz






k

=



Q̄∗

11
Q̄∗

16

Q̄∗
16

Q̄∗
66




k 




ǫz

γsz





(31)

where Q̄∗
ij are transformed reduced stiffnesses. The transformed reduced stiffnesses can be calculated from the

transformed stiffnesses based on the plane stress (σs = 0) and plane strain (ǫs = 0) assumption. More detailed

explanation can be found in Ref.[26].
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The constitutive relation for out-of-plane stress and strain is given by

σnz = Q̄55γnz (32)

The constitutive equations for bar forces and bar strains are obtained by using Eqs.(18), (23) and (31)





Nz

My

Mx

Mω

Mt

Vx

Vy

T

Rz






=




E11 E12 E13 E14 E15 E16 E17 E18 E19

E22 E23 E24 E25 E26 E27 E28 E29

E33 E34 E35 E36 E37 E38 E39

E44 E45 E46 E47 E48 E49

E55 E56 E57 E58 E59

E66 E67 E68 E69

E77 E78 E79

E88 E89

sym. E99









ǫ◦z

κy

κx

κω

κsz

γ◦xz

γ◦yz

γ◦ω

χz






(33)

where Eij are the laminate stiffnesses of thin-walled composite beams. (Ei,9 i = 1..9) can be defined by

E19 =

∫

s

(2rB11 +D11)ds (34a)

E29 =

∫

s

[
2rxB11 +D11(x+ 2r sin θ) + F11 sin θ

]
ds (34b)

E39 =

∫

s

[
2ryB11 +D11(y − 2r cos θ) − F11 cos θ

]
ds (34c)

E49 =

∫

s

[
2rωB11 +D11(ω − 2rq) − F11q

]
ds (34d)

E59 =

∫

s

[
2B16r

F

2t
+D16(

F

2t
+ 2r) + F16

]
ds (34e)

E69 =

∫

s

(2rB16 +D16) cos θds (34f)

E79 =

∫

s

(2rB16 +D16) sin θds (34g)

E89 =

∫

s

(2rB16 +D16)(r −
F

2t
)ds (34h)

E99 =

∫

s

(4r2D11 + 4rF11 +H11)ds (34i)

where Aij , Bij , Dij matrices are extensional, coupling, bending stiffness and Fij , Hij matrices are the higher order

stiffnesses, respectively, defined by

(Aij , Bij , Dij , Fij , Hij) =

∫
Q̄ij(1, n, n

2, n3, n4)dn (35)

Other values of Eij can be found in Ref.[23]. The explicit forms of the laminate stiffnesses Eij for composite box

section are given in the Appendix.
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V. GOVERNING EQUATIONS

The nonlinear equilibrium equations of the present study can be obtained by integrating the derivatives of the

varied quantities by parts and collecting the coefficients of δW, δU, δV, δΦ, δΨy, δΨx and δΨω

N ′
z + Pz = 0 (36a)

V ′
x + [Nz(U

′ + ypΦ
′)]′ − [MxΦ′]′ + Vx = 0 (36b)

V ′
y + [Nz(V

′ − xpΦ
′)]′ + [MyΦ′]′ + Vy = 0 (36c)

M ′
t + T ′ + [Nz(r

2

pΦ′ + ypU
′ − xpV

′)]′ + [MyV
′]′ − [MxU

′]′ + [RzΦ
′]′ + T = 0 (36d)

M ′
y − Vx + My = 0 (36e)

M ′
x − Vy + Mx = 0 (36f)

M ′
ω +Mt − T + Mω = 0 (36g)

The natural boundary conditions are of the form

δW : Nz (37a)

δU : Vx +Nz(U
′ + ypΦ

′) −MxΦ′ (37b)

δV : Vy +Nz(V
′ − xpΦ

′) +MyΦ
′ (37c)

δΦ : T +Mt +Nz(r
2

pΦ′ + ypU
′ − xpV

′) +MyV
′ −MxU

′ +RzΦ
′ (37d)

δΨy : My (37e)

δΨx : Mx (37f)

δΨω : Mω (37g)

Eq.(37g) denotes the warping restraint boundary condition. When the warping of the cross section is restrained,

Ψω = 0 and when the warping is not restrained, Mω = 0.

By substituting Eqs.(17) and (33) into Eq.(36), the explicit form of the governing equations can be expressed with

respect to the laminate stiffnesses Eij . Eq.(36) is the most general nonlinear equilibrium equations for axial, flexural,

torsional and shearing behavior of thin-walled composite beams under various types of loadings, and the dependent

variables, W , U , V , Φ, Ψx, Ψy and Ψω are fully coupled.
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VI. FINITE ELEMENT FORMULATION

The present theory for thin-walled composite beams described in the previous section was implemented via a one-

dimensional displacement-based finite element method. The linear, quadratic and cubic elements with seven

degrees of freedom at each node as shown in the Fig.2 are derived. The same interpolation function

is used for all the translational and rotational displacements. Reduced integration of shear terms,

that is, stiffness coefficients involving laminate stiffnesses (Ei,j, i = 6..8, j = 6..8) is used to avoid shear

locking. The generalized displacements are expressed over each element as a combination of the one-dimensional

Lagrange interpolation function φ̂j associated with node j and the nodal values

W =

n∑

j=1

wj φ̂j (38a)

U =

n∑

j=1

ujφ̂j (38b)

V =

n∑

j=1

vj φ̂j (38c)

Φ =

n∑

j=1

φj φ̂j (38d)

Ψy =

n∑

j=1

ψyjφ̂j (38e)

Ψx =
n∑

j=1

ψxjφ̂j (38f)

Ψω =
n∑

j=1

ψωj φ̂j (38g)

where n is the number of nodes in an element and Lagrange interpolation function φ̂j for linear,

quadratic and cubic elements are available in the literature.

Substituting these expressions into the weak statement in Eq.(30), the finite element model of a typical element

can be expressed as

[
K({∆})

]
{∆} = {f} (39)

The nonlinear algebraic equations of present theory are solved by an iterative method. Thus, the nonlinear equa-

tions are linearized by evaluating the nonlinear terms with the known solution from preceding iterations. The

Newton−Raphson method that uses the tangent stiffness matrix, which is symmetric for all structural problems,
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is used in this study. By using this method, solution of Eq.(39) results in the following linearized equations for the

incremental solution at the rth iteration (Reddy [27])

[
T {∆}r−1

]
{∆} = {f} − ([K]{∆}r−1 (40)

where the tangent stiffness matrix is defined by

Tαβ
ij =

∂Kαγ
ik

∂uβ
j

uγ
k +Kαβ

ij (41)

In Eq.(39), {∆} is the unknown nodal displacements

{∆} = {W U V Φ Ψy Ψx Ψω}
T (42)

VII. NUMERICAL EXAMPLES

Throughout numerical examples, a tolerance of ǫ = 10−3 and maximum allowable iterations of 20 (per load step)

are used to check for convergence of nodal displacements in the Newton−Raphson iteration scheme. Ten quadratic

elements with three nodes are used in the numerical computation. The initial solution vector is chosen to

be the zero vector, so that the first iteration solution corresponds to the linear solution. The results of the present

analysis are given for both the linear and nonlinear case.

For verification purpose, a cantilever composite box beam with geometry and stacking sequence shown in Fig.3

under a tip vertical load of 1.78 KN is analyzed. The lamination of this beam consists of eight laminae of equal

thickness as follows: [0/ − θ2/90]s at the lower flange, [0/θ2/90]s at the upper flange and [(0/90)2]s at both webs,

respectively. The analysis is carried out assuming both plane stress (σs = 0) and plane strain (ǫs = 0) assumptions.

The following material properties are used (Stemple and Lee [11]):

E1 = 146.79GPa , E2 = 10.3GPa , ν12 = 0.28 , G12 = G23 = 6.2GPa , G13 = 4.82GPa (43)

The angle of twist and horizontal displacement with respect to fiber angle change are illustrated in Figs.4 and 5.

It is clear that horizontal displacement is due solely to coupling-induced geometrical nonlinear effect, which are not

present in the linear analysis. Fig.6 reveals that the vertical displacement more than doubles when fiber angle is

varied from θ = 0◦ to θ = 90◦. From the aforementioned figures, the coincidence of the results between Stemple
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and Lee [11] and Kalfon and Rand [13] and the present model is observed, while there is the small deviation of the

vertical displacement as fiber angle increases. It seems that the solutions in both of the studies [11,13] were calculated

by using plane strain assumption. The proposed model agrees well with previously available results and can capture

exactly all the geometrical nonlinear response of composite beam.

A pinned-hinged composite box beam of length L = 2m under an eccentric uniform load q acting at the midplane

of the left web is considered in order to investigate the effect of the load parameter, shear deformation and fiber

orientation on the displacements. It is noted earlier by authors [21-25] that the results based on the plane stress

assumption (σs = 0) yield better agreement with ABAQUS solution. For this reason, plane stress assumption

(σs = 0) is used in numerical computation. The configuration of the composite box beam is shown in Fig.7, and the

following engineering constants are used

E1/E2 = 25, G12/E2 = 0.6, G12 = G13 = G23, ν12 = 0.25 (44)

For convenience, the following nondimensional values of the axial, vertical displacement, and load parameter are

used

w =
w

b1
(45a)

v =
v

b1
(45b)

q =
qL4

E2b31t
(45c)

Stacking sequence of this beam consists of two layers with equal thickness as follows: [θ]2 at top flange and right

web, [−θ]2 at left web and bottom flange, respectively (Fig.8a). For this lay-up, most coupling stiffnesses become

zero, but E17, E18, E19, E25, E35, E28 and E38 do not vanish due to unsymmetric stacking sequence between the

webs and flanges. Accordingly, this beam sustains simultaneously two kinds of couplings from material anisotropy

and geometric nonlinearity. As the first example, the stacking sequence at two specific fiber angle θ = 45◦, 90◦ is

considered to investigate the effects of load parameter on the displacements in the high nonlinear region. It should

be noted that for θ = 90◦, all the coupling stiffness vanish, that is, only geometrical nonlinear effect exists. The load

increment of ∆q = 0.05 is employed until the first critical point is reached. The results of the linear analysis are

also presented to highlight the difference between linear and nonlinear responses with increasing load. Figs.9 and 10

show the load versus vertical displacement and load versus torsional displacement at two fiber angles. It is evident

that the linear theory is adequate in a relatively large region up to the point where an applied load reaches value of

q = 4 and 8 for fiber angle θ = 90◦ and 45◦, respectively. When comparing with linear analysis, all the nonlinear
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displacements increase with increasing value of the load. This is due to the fact that the geometrical nonlinear effect

causes axial-flexural-torsional-shearing coupling which results in a decrease in the flexural and torsional stiffness of

the beam. The effect of the geometric nonlinearity is apparent with increasing load intensity. The highest load of

fiber angle θ = 90◦ is smaller than that of θ = 45◦. At this load, for θ = 45◦, the nonlinear vertical and torsional

displacement is about 120% and 350% of the linear value, respectively. It is from Fig.11 that highlights the influence

of geometrical nonlinear effect on the axial displacement of beam. This response is never seen in linear analysis

because the coupling terms from geometric nonlinearity are not present. It implies that the structure under eccentric

transverse load not only causes the vertical displacement and angle of twist as would be observed in linear case, but

also causes additional response due solely to geometric nonlinearity never seen in linear case.

To investigate the geometrical nonlinear and shear deformation effects further, the same configuration with the

previous example except the load and lay-up is considered. Stacking sequence of the top flange and the right web

are [θ]2, while the bottom flange and the left web are assumed unidirectional (Fig.8b). A constant applied load is

analyzed while the fiber angle is rotated in the top flange and the right web. Based on previous numerical example,

an applied load q = 7.0 is chosen to show effect of fiber orientation on the axial-flexural-torsional response. By

using a combination of the one-dimensional linear Lagrange and Hermite-cubic interpolation function

in finite element formulation, the results obtained by authors from previous research [24] based on

the classical beam theory are also displayed. The influence of the shear deformation effect is demonstrated by

presenting the discrepancy of the vertical and torsional displacements with respect to fiber angle variation in Figs.12

and 13. The nonlinear solutions excluding shear deformation effect remarkably underestimate the displacements for

all the range of fiber angles, as expected. As fiber angles are less than θ = 30◦, the vertical displacement of linear

and nonlinear analysis coincides. The angle of twist of two analyzes shows the same tendency and reaches minimum

value between fiber angle θ ∈ [30◦−40◦], that is, because the torsional rigidity becomes maximum value at this range.

However, as the fiber angle increases, since the geometrical nonlinear effect is prominent, the discrepancy between

the linear and nonlinear analysis becomes significant. It is observed that the nonlinear vertical displacement is not

as sensitive as the nonlinear torsional displacement when fiber angle changes. The difference between displacements

of two analyzes is minimum at θ = 0◦ and reaches maximum value at θ = 90◦. This phenomenon can be explained

that the axial, flexural, torsional and shearing rigidities decrease significantly with increasing fiber angle, and thus,

the relative geometrical nonlinear effect becomes larger for higher fiber angles.
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VIII. CONCLUDING REMARKS

A geometrically nonlinear analysis for thin-walled composite beams with arbitrary lay-ups under various types of

loadings has been presented. This model is based on the first-order shear deformable beam theory, and accounts

for all the structural coupling coming from both material anisotropy and geometric nonlinearity. General nonlinear

governing equations are derived and solved by means of an incremental Newton−Raphson method. A displacement-

based one-dimensional finite element model that accounts for the geometric nonlinearity in the von Kármán sense is

developed. Numerical results are obtained to investigate the effects of shear deformation, geometric nonlinearity, fiber

orientation and load parameter on axial-flexural-torsional response. The shear effects become significant for lower

span-to-height ratio and higher degrees of orthotropy of the beam. The present model is found to be appropriate and

efficient in analyzing geometrically nonlinear behavior of thin-walled composite beams.
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Appendix

The explicit forms of the laminate stiffnesses Eij for composite box section in Fig.14 can be defined by

E19 = (−2x1 + 2xp)B
1

11
b1 +D1

11
b1 + (−2y2 + 2yp)B

2

11
b2 +D2

11
b2

+ (2x3 − 2xp)B
3

11
b1 +D3

11
b1 + (2y4 − 2yp)B

4

11
b2 +D4

11
b2 (46a)

E29 = (−2x1 + 2xp)x1B
1

11
b1 +D1

11
(3x1 − 2xp)b1 − F 1

11
b1

+
1

2

[
(−2y2 + 2yp)B

2

11 +D2

11

]
b22 + (−2y2 + 2yp)x1B

2

11b2 +D2

11x1b2

+ (2x3 − 2xp)x3B
3

11b1 +D3

11(3x3 − 2xp)b1 + F 3

11b1

+
1

2

[
(−2y4 + 2yp)B

4

11 −D4

11

]
b22 + (2y4 − 2yp)x3B

4

11b2 +D4

11x3b2 (46b)

E39 =
1

2

[
(2x1 − 2xp)B

1

11 −D1

11

]
b21 + (−2x1 + 2xp)y4B

1

11b1 +D1

11y4b1

+ (−2y2 + 2yp)y2B
2

11
b2 +D2

11
(3y2 − 2yp)b2 − F 2

11
b2
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+
1

2

[
(2x3 − 2xp)B

3

11 +D3

11

]
b21 + (2x3 − 2xp)y2B

3

11b1 +D3

11y2b1

+ (2y4 − 2yp)y4B
4

11
b2 +D4

11
(3y4 − 2yp)b2 + F 4

11
b2 (46c)

E49 =
1

2

[
(−2x1 + 2xp)A1B

1

11
+D1

11
(A1 + 2x1 − 2xp) − F 1

11

]
b2
1
+ (−2x1 + 2xp)CB

1

11
b1

+ D1

11
(C − (−2x1 + 2xp)(−y4 + yp))b1 − F 1

11
(−y4 + yp)b1

+
1

2

[
(−2y2 + 2yp)A2B

2

11
+D2

11
(A2 + 2y2 − 2yp) − F 2

11

]
b2
2
+ (−2y2 + 2yp)(A1b1 + C)B2

11
b2

+ D2

11(A1b1 + C − (−2y2 + 2yp)(x1 − xp))b2 − F 2

11(x1 − xp)b2

+
1

2

[
(2x3 − 2xp)A3B

3

11 +D3

11(A3 − 2x3 + 2xp) − F 3

11

]
b21 + (2x3 − 2xp)(A1b1 +A2b2 + C)B3

11b1

+ D3

11(−(2x3 − 2xp)(y2 − yp) +A1b1 +A2b2 + C)b1 − F 3

11(y2 − yp)b1

+
1

2

[
(2y4 − 2yp)A4B

4

11
+D4

11
(A4 − 2y4 + 2yp) − F 4

11

]
b2
2
+ (2y4 − 2yp)(C +A1b1 +A2b2 +A3b1)B

4

11
b2

+ D4

11
(C +A1b1 +A2b2 +A3b1 − (2y4 − 2yp)(−x3 + xp))b2 − F 4

11
(−x3 + xp)b2 (46d)

E59 =
1

2
(−x1 + xp)

F

2t1
B1

16
b1 +D1

16
(
F

2t1
− 2x1 + 2xp)b1 + F 1

16
b1

+
1

2
(−y2 + yp)

F

2t2
B2

16
b2 +D1

16
(
F

2t2
− 2y2 + 2yp)b2 + F 2

16
b2

+
1

2
(x3 − xp)

F

2t3
B3

16b1 +D3

16(
F

2t3
+ 2x3 − 2xp)b1 + F 3

16b1

+
1

2
(y4 − yp)

F

2t4
B4

16b2 +D4

11(
F

2t4
+ 2y4 − 2yp)b2 + F 4

16b2 (46e)

E69 = (−2y2 + 2yp)B
2

16b2 +D2

16b2 − (2y4 − 2yp)B
4

16b2 −D4

16b2 (46f)

E79 = (2x1 − 2xp)B
1

16
b1 −D1

16
b1 + (2x3 − 2xp)B

3

16
b1 +D3

16
b1 (46g)

E89 =
[
(−2x1 + 2xp)B

1

16
+D1

16

]
(−x1 + xp −

F

2t1
)b1

+
[
(−2y2 + 2yp)B

2

16
+D2

16

]
(−y2 + yp −

F

2t2
)b2

+
[
(2x3 − 2xp)B

3

16
+D3

16

]
(x3 − xp −

F

2t3
)b1

+
[
(2y4 − 2yp)B

4

16 +D4

16

]
(y4 − yp −

F

2t4
)b2 (46h)

E99 = (−4x1 + 4xp)(−x1 + xp)D
1

11b1 + (−4x1 + 4xp)F
1

11b1 +H1

11b1

+ (−4y2 + 4yp)(−y2 + yp)D
2

11b2 + (−4y2 + 4yp)F
2

11b2 +H2

11b2

+ (4x3 − 4xp)(x3 − xp)D
3

11
b1 + (4x3 − 4xp)F

3

11
b1 +H3

11
b1

+ (4y4 − 4yp)(y4 − yp)D
4

11
b2 + (4y4 − 4yp)F

4

11
b2 +H4

11
b2 (46i)

where the St. Venant circuit shear flow F , constant C and other values of Eij can be found in Refs.[22,23]
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CAPTIONS OF FIGURES

Figure 1: Definition of coordinates and generalized displacements in thin-walled closed sections.

Figure 2: Nodal displacements of thin-walled beam element.

Figure 3: A cantilever composite box beam under a 1.78 KN tip vertical load.

Figure 4: Variation of the angle of twist with respect to fiber angle change in the flanges of a cantilever composite

box beam under a 1.78 KN tip vertical load.

Figure 5: Variation of the horizontal displacement with respect to fiber angle change in the flanges of a cantilever

composite box beam under a 1.78 KN tip vertical load.

Figure 6: Variation of the vertical displacement with respect to fiber angle change in the flanges of a cantilever

composite box beam under a 1.78 KN tip vertical load.

Figure 7: A pinned-hinged composite box beam under an eccentric uniform load.

Figure 8: The stacking sequences of thin-walled composite box beams.

Figure 9: Load versus the vertical displacement at mid-span of a pinned-hinged composite box beam under an

eccentric uniform load.

Figure 10: Load versus the angle of twist at mid-span of a pinned-hinged composite box beam under an eccentric

uniform load.

Figure 11: Load versus the axial displacement at mid-span of a pinned-hinged composite box beam under an

eccentric uniform load.

Figure 12: Variation of the vertical displacement at mid-span with respect to fiber angle change in the top flange

and right web of a pinned-hinged composite box beam under an eccentric uniform load.

Figure 13: Variation of the angle of twist at mid-span with respect to fiber angle change in the top flange and right

web of a pinned-hinged composite box beam under an eccentric uniform load.

Figure 14: Geometry of thin-walled composite box section.
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FIG. 1 Definition of coordinates and generalized displacements in thin-walled closed sections.



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

22

FIG. 2 Nodal displacements of thin-walled beam element.
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FIG. 3 A cantilever composite box beam under a 1.78 KN tip vertical load.
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FIG. 4 Variation of the angle of twist with respect to fiber angle change in the flanges of a cantilever composite box beam

under a 1.78 KN tip vertical load.
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FIG. 5 Variation of the horizontal displacement with respect to fiber angle change in the flanges of a cantilever composite box

beam under a 1.78 KN tip vertical load.
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FIG. 6 Variation of the vertical displacement with respect to fiber angle change in the flanges of a cantilever composite box

beam under a 1.78 KN tip vertical load.
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FIG. 7 A pinned-hinged composite box beam under an eccentric uniform load.
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FIG. 8 The stacking sequences of thin-walled composite box beams.
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FIG. 9 Load versus the vertical displacement at mid-span of a pinned-hinged composite box beam under an eccentric uniform

load.
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FIG. 10 Load versus the angle of twist at mid-span of a pinned-hinged composite box beam under an eccentric uniform load.
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load.
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FIG. 12 Variation of the vertical displacement at mid-span with respect to fiber angle change in the top flange and right web

of a pinned-hinged composite box beam under an eccentric uniform load.
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FIG. 13 Variation of the angle of twist at mid-span with respect to fiber angle change in the top flange and right web of a

pinned-hinged composite box beam under an eccentric uniform load.
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FIG. 14 Geometry of thin-walled composite box section.


