129 research outputs found

    How Covid-19 changed the epidemiology of febrile urinary tract infections in children in the emergency department during the first outbreak

    Get PDF
    Background: The first Covid-19 pandemic affected the epidemiology of several diseases. A general reduction in the emergency department (ED) accesses was observed during this period, both in adult and pediatric contexts. Methods: This retrospective study was conducted on the behalf of the Italian Society of Pediatric Nephrology (SINePe) in 17 Italian pediatric EDs in March and April 2020, comparing them with data from the same periods in 2018 and 2019. The total number of pediatric (age 0–18 years) ED visits, the number of febrile urinary tract infection (UTI) diagnoses, and clinical and laboratory parameters were retrospectively collected. Results: The total number of febrile UTI diagnoses was 339 (73 in 2020, 140 in 2019, and 126 in 2018). During the first Covid-19 pandemic, the total number of ED visits decreased by 75.1%, the total number of febrile UTI diagnoses by 45.1%, with an increase in the UTI diagnosis rate (+ 121.7%). The data collected revealed an increased rate of patients with two or more days of fever before admission (p = 0.02), a significant increase in hospitalization rate (+ 17.5%, p = 0.008) and also in values of C reactive protein (CRP) (p = 0.006). In 2020, intravenous antibiotics use was significantly higher than in 2018 and 2019 (+ 15%, p = 0.025). Urine cultures showed higher Pseudomonas aeruginosa and Enterococcus faecalis percentages and lower rates of Escherichia coli (p = 0.02). Conclusions: The first wave of the Covid-19 pandemic had an essential impact on managing febrile UTIs in the ED, causing an absolute reduction of cases referring to the ED but with higher clinical severity. Children with febrile UTI were more severely ill than the previous two years, probably due to delayed access caused by the fear of potential hospital-acquired Sars-Cov-2 infection. The possible increase in consequent kidney scarring in this population should be considered

    Investigating the Origin of Seismic Swarms

    Get PDF
    According to the U.S. Geological Survey’s Earthquake Hazards Program, a seismic swarm is “a localized surge of earth- quakes, with no one shock being conspicuously larger than all other shocks of the swarm. They might occur in a variety of geologic environments and are not known to be indicative of any change in the long- term seismic risk of the region in which they occur” (http://vulcan.wr.usgs.gov/Glossary/ Seismicitydescription_earthquakes.html). The definition reveals how little is actually known about seismic swarms. For example, could certain seismic settings be more prone to swarms? Could a fault zone prone to large energetic earthquakes release part of its stress through seismic swarms? Do swarms keep hazards in balance, or could their onset increase hazards? To gain insight into the nature of seismic swarms in nonvolcanic areas and to better understand their influence on seismic hazards, the Istituto Nazionale di Geofisica e Vulcanologia (INGV) and the German Research Centre for Geoscience (GFZ) began a combined research project within the framework of the Network of European Research Infrastructures for Earthquake Risk Assessment and Mitigation (NERA; see http:// www.nera-eu.org/). The project focused on monitoring swarm activity occurring in the Pollino range in Southern Apennines, Italy.Published361-3721.1. TTC - Monitoraggio sismico del territorio nazionaleN/A or not JCRrestricte

    A multi-technology analysis of the 2017 North Korean nuclear test

    Get PDF
    On 3 September 2017 official channels of the Democratic People's Republic of Korea announced the successful test of a thermonuclear device. Only seconds to minutes after the alleged nuclear explosion at the Punggye-ri nuclear test site in the mountainous region in the country's northeast at 03:30:02 (UTC), hundreds of seismic stations distributed all around the globe picked up strong and distinct signals associated with an explosion. Different seismological agencies reported body wave magnitudes of well above 6.0, consequently estimating the explosive yield of the device on the order of hundreds of kT TNT equivalent. The 2017 event can therefore be assessed as being multiple times larger in energy than the two preceding North Korean events in January and September 2016. This study provides a multi-technology analysis of the 2017 North Korean event and its aftermath using a wide array of geophysical methods. Seismological investigations locate the event within the test site at a depth of approximately 0.6&thinsp;km below the surface. The radiation and generation of P- and S-wave energy in the source region are significantly influenced by the topography of the Mt. Mantap massif. Inversions for the full moment tensor of the main event reveal a dominant isotropic component accompanied by significant amounts of double couple and compensated linear vector dipole terms, confirming the explosive character of the event. The analysis of the source mechanism of an aftershock that occurred around 8&thinsp;min after the test in the direct vicinity suggest a cavity collapse. Measurements at seismic stations of the International Monitoring System result in a body wave magnitude of 6.2, which translates to an yield estimate of around 400&thinsp;kT TNT equivalent. The explosive yield is possibly overestimated, since topography and depth phases both tend to enhance the peak amplitudes of teleseismic P waves. Interferometric synthetic aperture radar analysis using data from the ALOS-2 satellite reveal strong surface deformations in the epicenter region. Additional multispectral optical data from the Pleiades satellite show clear landslide activity at the test site. The strong surface deformations generated large acoustic pressure peaks, which were observed as infrasound signals with distinctive waveforms even at distances of 401&thinsp;km. In the aftermath of the 2017 event, atmospheric traces of the fission product 133Xe were detected at various locations in the wider region. While for 133Xe measurements in September 2017, the Punggye-ri test site is disfavored as a source by means of atmospheric transport modeling, detections in October 2017 at the International Monitoring System station RN58 in Russia indicate a potential delayed leakage of 133Xe at the test site from the 2017 North Korean nuclear test.</p

    Kidins220/ARMS is an essential modulator of cardiovascular and nervous system development

    Get PDF
    The growth factor family of neurotrophins has major roles both inside and outside the nervous system. Here, we report a detailed histological analysis of key phenotypes generated by the ablation of the Kinase D interacting substrate of 220 kDa/Ankyrin repeat-rich membrane spanning (Kidins220/ARMS) protein, a membrane-anchored scaffold for the neurotrophin receptors Trk and p75NTR. Kidins220 is important for heart development, as shown by the severe defects in the outflow tract and ventricle wall formation displayed by the Kidins220 mutant mice. Kidins220 is also important for peripheral nervous system development, as the loss of Kidins220 in vivo caused extensive apoptosis of DRGs and other sensory ganglia. Moreover, the neuronal-specific deletion of this protein leads to early postnatal death, showing that Kidins220 also has a critical function in the postnatal brain

    AbundĂąncia de gaviĂŁo-real e gaviĂŁo-real falso numa ĂĄrea sob impacto de reservatĂłrio no Baixo e MĂ©dio rio Xingu

    Get PDF
    In the Brazilian Amazon, two monospecific genera, the Harpy Eagle and Crested Eagle have low densities and are classified by IUCN as Near Threatened due to habitat loss, deforestation, habitat degradation and hunting. In this study, we evaluate occurrence of these large raptors using the environmental surveys database from Belo Monte Hydroelectric Power Plant. Integrating the dataset from two methods, we plotted a distribution map along the Xingu River, including records over a 276-km stretch of river. Terrestrial surveys (RAPELD method) were more efficient for detecting large raptors than standardized aquatic surveys, although the latter were complementary in areas without modules. About 53% of the records were obtained during activities of wildlife rescue/flushing, vegetation suppression or in transit. Between 2012 and 2014, four Harpy Eagles were removed from the wild; two shooting victims, one injured by collision with power lines and one hit by a vehicle. Also, seven nests were mapped. The mean distance between Harpy Eagle records was 15 km along the river channel, with a mean of 20 km between nests near the channel, which allowed us to estimate 20 possible pairs using the alluvial forest, riverine forest and forest fragments. Territories of another ten pairs will probably be affected by inundation of the Volta Grande channel, which is far from the main river. The average distance between Crested Eagle records was 16 km along the river channel. The only nest found was 1.3 km away from a Harpy Eagle nest. The remnant forests are under threat of being replaced by cattle pastures, so we recommend that permanently protected riparian vegetation borders (APP) be guaranteed, and that forest fragments within 5 km of the river be conserved to maintain eagle populations. © 2015, Instituto Internacional de Ecologia. All rights reserved

    Electrical Control of Optical Emitter Relaxation Pathways enabled by Graphene

    Get PDF
    Controlling the energy flow processes and the associated energy relaxation rates of a light emitter is of high fundamental interest, and has many applications in the fields of quantum optics, photovoltaics, photodetection, biosensing and light emission. While advanced dielectric and metallic systems have been developed to tailor the interaction between an emitter and its environment, active control of the energy flow has remained challenging. Here, we demonstrate in-situ electrical control of the relaxation pathways of excited erbium ions, which emit light at the technologically relevant telecommunication wavelength of 1.5 Ό\mum. By placing the erbium at a few nanometres distance from graphene, we modify the relaxation rate by more than a factor of three, and control whether the emitter decays into either electron-hole pairs, emitted photons or graphene near-infrared plasmons, confined to <<15 nm to the sheet. These capabilities to dictate optical energy transfer processes through electrical control of the local density of optical states constitute a new paradigm for active (quantum) photonics.Comment: 9 pages, 4 figure

    Synapsin II Is Involved in the Molecular Pathway of Lithium Treatment in Bipolar Disorder

    Get PDF
    Bipolar disorder (BD) is a debilitating psychiatric condition with a prevalence of 1–2% in the general population that is characterized by severe episodic shifts in mood ranging from depressive to manic episodes. One of the most common treatments is lithium (Li), with successful response in 30–60% of patients. Synapsin II (SYN2) is a neuronal phosphoprotein that we have previously identified as a possible candidate gene for the etiology of BD and/or response to Li treatment in a genome-wide linkage study focusing on BD patients characterized for excellent response to Li prophylaxis. In the present study we investigated the role of this gene in BD, particularly as it pertains to Li treatment. We investigated the effect of lithium treatment on the expression of SYN2 in lymphoblastoid cell lines from patients characterized as excellent Li-responders, non-responders, as well as non-psychiatric controls. Finally, we sought to determine if Li has a cell-type-specific effect on gene expression in neuronal-derived cell lines. In both in vitro models, we found SYN2 to be modulated by the presence of Li. By focusing on Li-responsive BD we have identified a potential mechanism for Li response in some patients

    Evaluating the SERCA2 and VEGF mRNAs as Potential Molecular Biomarkers of the Onset and Progression in Huntington's Disease

    Get PDF
    Abnormalities of intracellular Ca2+ homeostasis and signalling as well as the down-regulation of neurotrophic factors in several areas of the central nervous system and in peripheral tissues are hallmarks of Huntington\u2019s disease (HD). As there is no therapy for this hereditary, neurodegenerative fatal disease, further effort should be made to slow the progression of neurodegeneration in patients through the definition of early therapeutic interventions. For this purpose, molecular biomarker(s) for monitoring disease onset and/or progression and response to treatment need to be identified. In the attempt to contribute to the research of peripheral candidate biomarkers in HD, we adopted a multiplex real-time PCR approach to analyse the mRNA level of targeted genes involved in the control of cellular calcium homeostasis and in neuroprotection. For this purpose we recruited a total of 110 subjects possessing the HD mutation at different clinical stages of the disease and 54 sex- and agematched controls. This study provides evidence of reduced transcript levels of sarco-endoplasmic reticulum-associated ATP2A2 calcium pump (SERCA2) and vascular endothelial growth factor (VEGF) in peripheral blood mononuclear cells (PBMCs) of manifest and premanifest HD subjects. Our results provide a potentially new candidate molecular biomarker for monitoring the progression of this disease and contribute to understanding some early events that might have a role in triggering cellular dysfunctions in HD
    • 

    corecore