46 research outputs found

    The New Physics Case for Beam-Dump Experiments with Accelerated Muon Beams

    Full text link
    As the field examines a future muon collider as a possible successor to the LHC, we must consider how to fully utilize not only the high-energy particle collisions, but also any lower-energy staging facilities necessary in the R&D process. An economical and efficient possibility is to use the accelerated muon beam from either the full experiment or from cooling and acceleration tests in beam-dump experiments.Beam-dump experiments are complementary to the main collider as they achieve sensitivity to very small couplings with minimal instrumentation. We demonstrate the utility of muon beam-dump experiments for new physics searches at energies from 10 GeV to 5 TeV. We find that, even at low energies like those accessible at staging or demonstrator facilities, it is possible to probe new regions of parameter space for a variety of generic BSM models, including muonphilic, leptophilic, LμLτL_\mu - L_\tau, and dark photon scenarios. Such experiments could therefore provide opportunities for discovery of new physics well before the completion of the full multi-TeV collider.Comment: 22 pages and 10 figures + 11 pages and 10 figure

    Interpreting the Electron EDM Constraint

    Full text link
    The ACME collaboration has recently announced a new constraint on the electron EDM, de<1.1×1029ecm|d_e| < 1.1 \times 10^{-29}\, e\, {\rm cm}, from measurements of the ThO molecule. This is a powerful constraint on CP-violating new physics: even new physics generating the EDM at two loops is constrained at the multi-TeV scale. We interpret the bound in the context of different scenarios for new physics: a general order-of-magnitude analysis for both the electron EDM and the CP-odd electron-nucleon coupling; 1-loop SUSY, probing sleptons above 10 TeV; 2-loop SUSY, probing multi-TeV charginos or stops; and finally, new physics that generates the EDM via the charm quark or top quark Yukawa couplings. In the last scenario, new physics generates a "QULE operator" (qfσˉμνuˉf)(σˉμνeˉ)(q_f \bar{\sigma}^{\mu \nu}{\bar u}_f) \cdot (\ell {\bar{\sigma}}_{\mu \nu} {\bar e}), which in turn generates the EDM through RG evolution. If the QULE operator is generated at tree level, this corresponds to a previously studied leptoquark model. For the first time, we also classify scenarios in which the QULE operator is generated at one loop through a box diagram, which include SUSY and leptoquark models. The electron EDM bound is the leading constraint on a wide variety of theories of CP-violating new physics interacting with the Higgs boson or the top quark. We argue that any future nonzero measurement of an electron EDM will provide a strong motivation for constructing new colliders at the highest feasible energies.Comment: 23 pages plus appendices, 16 figure

    New μ\mu Forces From νμ\nu_\mu Sources

    Full text link
    Accelerator-based experiments reliant on charged pion and kaon decays to produce muon-neutrino beams also deliver an associated powerful flux of muons. Therefore, these experiments can additionally be sensitive to light new particles that preferentially couple to muons and decay to visible final states on macroscopic length scales. Such particles are produced through rare 3-body meson decays in the decay pipe or via muon scattering in the beam dump, and decay in a downstream detector. To demonstrate the potential of this search strategy, we recast existing MiniBooNE and MicroBooNE studies of neutral pion production in neutrino-induced neutral-current scattering (νμNνμNπ0, π0γγ\nu_\mu N \to \nu_\mu N \pi^0,~\pi^0\rightarrow \gamma\gamma) to place new leading limits on light (<2mμ< 2m_\mu) muon-philic scalar particles that decay to diphotons through loops of virtual muons. Our results exclude scalars of mass between 10 and 60 MeV in which this scenario resolves the muon g2g-2 anomaly. We also make projections for the sensitivity of SBND to these models and provide a road map for future neutrino experiments to perform dedicated searches for muon-philic forces.Comment: 6 pages, 6 figure

    Reinterpretation of LHC Results for New Physics: Status and recommendations after Run 2

    Get PDF
    We report on the status of efforts to improve the reinterpretation of searches and measurements at the LHC in terms of models for new physics, in the context of the LHC Reinterpretation Forum. We detail current experimental offerings in direct searches for new particles, measurements, technical implementations and Open Data, and provide a set of recommendations for further improving the presentation of LHC results in order to better enable reinterpretation in the future. We also provide a brief description of existing software reinterpretation frameworks and recent global analyses of new physics that make use of the current data

    Towards a muon collider

    Get PDF
    A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work

    Towards a Muon Collider

    Full text link
    A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work.Comment: 118 pages, 103 figure

    Erratum:Towards a muon collider

    Get PDF

    Towards a muon collider

    Get PDF
    A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work

    Erratum: Towards a muon collider

    Get PDF
    The original online version of this article was revised: The additional reference [139] has been added. Tao Han’s ORICD ID has been incorrectly assigned to Chengcheng Han and Chengcheng Han’s ORCID ID to Tao Han. Yang Ma’s ORCID ID has been incorrectly assigned to Lianliang Ma, and Lianliang Ma’s ORCID ID to Yang Ma. The original article has been corrected
    corecore