13 research outputs found

    Structural transformations in Cu, Ag, and Au metal nanoclusters

    Full text link
    Finite-temperature structures of Cu, Ag, and Au metal nanoclusters are calculated in the entire temperature range from 0 K to melting using a computational methodology that we proposed recently [Settem \emph{et al.}, Nanoscale, 2022, 14, 939]. In this method, Harmonic Superposition Approximation (HSA) and Parallel Tempering Molecular Dynamics (PTMD) are combined in a complementary manner. HSA is accurate at low temperatures and fails at higher temperatures. PTMD, on the other hand, effectively samples the high temperature region and melting. This method is used to study the size- and system-dependent competition between various structural motifs of Cu, Ag, and Au nanoclusters in the size range 1 to 2 nm. Results show that there are mainly three types of structural changes in metal nanoclusters depending on whether a solid-solid transformation occurs. In the first type, global minimum is the dominant motif in the entire temperature range. In contrast, when a solid-solid transformation occurs, the global minimum transforms either completely to a different motif or partially resulting in a co-existence of multiple motifs. Finally, nanocluster structures are analyzed to highlight the system-specific differences across the three metals.Comment: The following article has been accepted by Journal of Chemical Physics. After it is published, it will be found at https://doi.org/10.1063/5.0159257. Accepted version of the manuscript (along with supplementary material) consists of 32 pages, 11 figure

    Strain engineering in alloy nanoparticles

    Get PDF
    The deformation of interatomic distances with respect to those of the perfect crystal generates atomic-level strain. In nanoalloys, strain can arise because of finite size, morphology, domain structure and lattice mismatch between their atomic compounds. Strain can strongly affect the functional properties of nanoalloys, as it alters their electronic energy levels. Moreover, atomic-level strain generates atomic-level stress, which in turn results in distortions induced by strain. When the stress accumulated in a nanoalloy exceeds a certain level, the particle can relax that stress by undergoing structural transitions such as shape and/or chemical ordering transitions. Atomic-level strain is then a powerful tool to control and manipulate the structural and functional properties of nanoalloys. This requires a combined theoretical and experimental approach both to deeply understand the physical origin of strain, and to characterize it with a sub-angstrom resolution. Here, we present a theoretical analysis of the main sources of strain in nanoalloys, we analyse how atomic-level strain can be experimentally measured with transmission electron microscopy, we discuss its effect on the functional properties of nanoalloys, finally we describe how atomic-level stress arises from atomic-level strain, and how stress can induce structural transformations at the nanoscale

    Frame-by-frame observations of structure fluctuations in single mass-selected Au clusters using aberration-corrected electron microscopy

    Get PDF
    The multi-dimensional potential energy surface (PES) of a nanoparticle, such as a bare cluster of metal atoms, controls both the structure and dynamic behaviour of the particle. These properties are the subject of numerous theoretical simulations. However, quantitative experimental measurements of critical PES parameters are needed to regulate the models employed in the theoretical work. Experimental measurements of parameters are currently few in number, while model parameters taken from bulk systems may not be suitable for nanosystems. Here we describe a new measurement methodology, in which the isomer structures of a single deposited nanocluster are obtained frame-by-frame in an aberration-corrected scanning transmission electron microscope (ac-STEM) in high angle annular dark field (HAADF) mode. Several gold clusters containing 309 ± 15 atoms were analysed individually after deposition from a mass-selected cluster source onto an amorphous carbon film. The main isomers identified are icosahedral (Ih), decahedral (Dh) and face-centred-cubic (fcc) (the bulk structure), alongside many amorphous (glassy) structures. The results, which are broadly consistent with static ac-STEM measurements of an ensemble of such clusters, open the way to dynamic measurements of many different nanoparticles of diverse sizes, shapes and compositions

    Gaussian mixture model for the unsupervised classification of AgCu nanoalloys based on the common neighbor analysis

    No full text
    In this short communication we describe the results obtained from the application of the Gaussian mixture model, a popular unsupervised learning algorithm, to some modified data sets gained after the global optimizations of three different AgCu nanoalloys. In particular we highlight both positive and negative aspects of such an approach to this kind of data. We show indeed that thanks to the Common Neighbor Analysis we are still able to describe nanoalloys well enough to exploit a physically meaningful separation in different structural families, even with a very low-dimensional representation. On the other hand, we show that the imposition of an energy cutoff over the data set is a delicate matter since it forces us to find a tradeoff between having a large set of data and having clean data

    XYZ coordinates of PtPd structures

    No full text
    <p>XYZ coordinates for PtPd structures with N=59,100 and 180 atoms, both for decahedral tetrahedral and fcc shapes, at different compositions.</p&gt

    Growth mechanisms from tetrahedral seeds to multiply twinned Au nanoparticles revealed by atomistic simulations

    No full text
    International audienceAtomic level simulations supported by density-functional theory calculations identify the key mechanisms of the twinning process in gold tetrahedral nanoparticles, which is shown to originate from the growth kinetics of the pure, ligand-free metal

    Growth of size-matched nanoalloys – a comparison of AuAg and PtPd

    No full text
    The gas-phase growth of AuAg and PtPd clusters up to sizes ~3 nm is simulated by Molecular Dynamics. Both systems are characterized by a very small size mismatch and by a tendency of the less cohesive element to segregate at the nanoparticle surface. The aim of this work is to figure out the differences in the behavior between these two bimetallic systems at the atomic level. For each system, three simulation types are performed, in which either one species or both species are deposited on preformed bimetallic seeds. Our results show that core@shell and intermixed chemical ordering arrangements can be obtained, in agreement with the available experimental data. In the case of core@shell arrangement, the purity of the surface layer is perfect for Ag-rich and Pd-rich nanoparticles, whereas in Au-rich and Pt-rich ones, some tendency to surface migration of minority atoms (Ag or Pd) is observed. This tendency is somewhat stronger for Ag than for Pd. The analysis of the internal arrangement of the nanoparticles indicates that in the growth process the mobility of Pd and Ag minority atoms is stronger than that of Au and Pt minority atoms

    Octahedral Growth of PtPd Nanocrystals

    Get PDF
    PtPd nanoparticles are among the most widely studied nanoscale systems, mainly because of their applications as catalysts in chemical reactions. In this work, a combined experimental-theoretical study is presented about the dependence of growth shape of PtPd alloy nanocrystals on their composition. The particles are grown in the gas phase and characterized by STEM-HRTEM. PtPd nanoalloys present a bimodal size distribution. The size of the larger population can be tuned between 3.8 ± 0.4 and 14.1 ± 2.0 nm by controlling the deposition parameters. A strong dependence of the particle shape on the composition is found: Pd-rich nanocrystals present more rounded shapes whereas Pt-rich ones exhibit sharp tips. Molecular dynamics simulations and excess energy calculations show that the growth structures are out of equilibrium. The growth simulations are able to follow the growth shape evolution and growth pathways at the atomic level, reproducing the structures in good agreement with the experimental results. Finally the optical absorption properties are calculated for PtPd nanoalloys of the same shapes and sizes grown in our experiments
    corecore