4,005 research outputs found

    Magnetic, electrical, and GPR waterborne surveys of moraine deposits beneath a lake: A case history from Turin, Italy

    Get PDF
    Bathymetry and bottom sediment types of inland water basins provide meaningful information to estimate water reserves and possible connections between surface and groundwater. Waterborne geophysical surveys can be used to obtain several independent physical parameters to study the sediments. We explored the possibilities of retrieving information on both shallow and deep geological structures beneath a morainic lake by means of waterborne nonseismic methods. In this respect, we discuss simultaneous magnetic, electrical, and groundpenetrating radar (GPR) waterborne surveys on the Candia morainic lake in northerly Turin (Italy).We used waterborne GPR to obtain information on the bottom sediment and the bathymetry needed to constrain the magnetic and electrical inversions. We obtained a map of the total magnetic field (TMF) over the lake from which we computed a 2D constrained compact magnetic inversion for selected profiles, along with a laterally constrained inversion for one electrical profile. The magnetic survey detected some deep anomalous bodies within the subbottom moraine. The electrical profiles gave information on the more superficial layer of bottom sediments. We identify where the coarse morainic material outcrops from the bottom finer sediments from a correspondence between high GPR reflectivity, resistivity, and magnetic anomalie

    On a microcanonical relation between continuous and discrete spin models

    Full text link
    A relation between a class of stationary points of the energy landscape of continuous spin models on a lattice and the configurations of a Ising model defined on the same lattice suggests an approximate expression for the microcanonical density of states. Based on this approximation we conjecture that if a O(n) model with ferromagnetic interactions on a lattice has a phase transition, its critical energy density is equal to that of the n = 1 case, i.e., a system of Ising spins with the same interactions. The conjecture holds true in the case of long-range interactions. For nearest-neighbor interactions, numerical results are consistent with the conjecture for n=2 and n=3 in three dimensions. For n=2 in two dimensions (XY model) the conjecture yields a prediction for the critical energy of the Berezinskij-Kosterlitz-Thouless transition, which would be equal to that of the two-dimensional Ising model. We discuss available numerical data in this respect.Comment: 5 pages, no figure

    Hamiltonian approach to hybrid plasma models

    Full text link
    The Hamiltonian structures of several hybrid kinetic-fluid models are identified explicitly, upon considering collisionless Vlasov dynamics for the hot particles interacting with a bulk fluid. After presenting different pressure-coupling schemes for an ordinary fluid interacting with a hot gas, the paper extends the treatment to account for a fluid plasma interacting with an energetic ion species. Both current-coupling and pressure-coupling MHD schemes are treated extensively. In particular, pressure-coupling schemes are shown to require a transport-like term in the Vlasov kinetic equation, in order for the Hamiltonian structure to be preserved. The last part of the paper is devoted to studying the more general case of an energetic ion species interacting with a neutralizing electron background (hybrid Hall-MHD). Circulation laws and Casimir functionals are presented explicitly in each case.Comment: 27 pages, no figures. To appear in J. Phys.

    Influence of hydrogen on the structural stability of annealed ultrathin Si/Ge amorphous layers

    Get PDF
    Semiconductor structures based on Si and Ge are generally submitted to hydrogenation because H passivates the dangling bonds of Si and Ge. By this way the devices prepared from those semiconductors, e.g., solar cells, have much better electrical properties. However, H stability is still a critical issue. In fact, there is wide evidence that H is very unstable against illumination as well as heat treatment. It has been seen that H out effuses from the samples under such treatments. As this causes unsaturation of the dangling bonds the electrical properties worsen significantly. In this work we will show that in the case of ultrathin Si/Ge amorphous layers the H thermal instability also affects the structural stability even up to the micrometric scale depending on the H content. Such type of structure can also be used to prepare SiGe alloys by mixing the layers with heat treatments. The samples were amorphous multilayers (MLs) of alternating ultrathin (3 nm) layers of Si and Ge deposited by sputtering on (100) oriented Si substrate. The total thickness of the MLs was 300 nm. The samples were hydrogenated by introducing H in the sputter chamber with flow rates varying from 0.8 to 6 ml/min. The MLs underwent different heat treatments, from the one at 350 ?C for 1 h up to the one at 250 ?C for 0.5 h + 450 ?C for 5 h. The samples were analysed by AFM, TEM, energy filtering TEM and Small-Angle X-Ray Diffraction (SAXRD). AFM showed that upon annealing the structure of the samples degrades with formation of surface bumps whose size increases by increasing the annealing temperature and/or time, for the same H content, or by increasing the H content for the same annealing conditions. For high H content and/or annealing conditions AFM showed that the bumps have blown up giving rise to craters. This suggests that H was released from its dangling bonds to Si and Ge and formed H bubbles in the MLs because of the energy supplied by the annealing. Additional energy for the break of the Si-H and Ge-H bonds could be the one supplied by the recombination of thermally generated carriers associated with the band gap fluctuations caused by the not uniform distribution of H in the MLs. The first sites of H accumulation are very likely nanocavities certainly present in the amorphous MLs. By TEM it has been seen that layer intermixing occurred which could be the first step of H bubbles formation. SAXRD measurements as well as TEM energy filtering maps for Si and Ge showed that Si and Ge interdiffusion took place in an asymmetric way as Si was seen to diffuse to the Ge layers whereas Ge did not diffuse to the Si layers. This might be due to the higher density of free dangling bonds in the Ge layers created by annealing because the binding energy of the Ge-H bond is smaller than the one of the Si-H bond

    Phase diagram of the pp-spin-interacting spin glass with ferromagnetic bias and a transverse field in the infinite-pp limit

    Full text link
    The phase diagram of the pp-spin-interacting spin glass model in a transverse field is investigated in the limit pp \to \infty under the presence of ferromagnetic bias. Using the replica method and the static approximation, we show that the phase diagram consists of four phases: Quantum paramagnetic, classical paramagnetic, ferromagnetic, and spin-glass phases. We also show that the static approximation is valid in the ferromagnetic phase in the limit pp \to \infty by using the large-pp expansion. Since the same approximation is already known to be valid in other phases, we conclude that the obtained phase diagram is exact.Comment: 16 pages, 4 figures. another additional author, some amendment

    Measurement of 1323 and 1487 keV resonances in 15N({\alpha}, {\gamma})19F with the recoil separator ERNA

    Get PDF
    The origin of fluorine is a widely debated issue. Nevertheless, the ^{15}N({\alpha},{\gamma})^{19}F reaction is a common feature among the various production channels so far proposed. Its reaction rate at relevant temperatures is determined by a number of narrow resonances together with the DC component and the tails of the two broad resonances at E_{c.m.} = 1323 and 1487 keV. Measurement through the direct detection of the 19F recoil ions with the European Recoil separator for Nuclear Astrophysics (ERNA) were performed. The reaction was initiated by a 15N beam impinging onto a 4He windowless gas target. The observed yield of the resonances at Ec.m. = 1323 and 1487 keV is used to determine their widths in the {\alpha} and {\gamma} channels. We show that a direct measurement of the cross section of the ^{15}N({\alpha},{\gamma})^{19}F reaction can be successfully obtained with the Recoil Separator ERNA, and the widths {\Gamma}_{\gamma} and {\Gamma}_{\alpha} of the two broad resonances have been determined. While a fair agreement is found with earlier determination of the widths of the 1487 keV resonance, a significant difference is found for the 1323 keV resonance {\Gamma}_{\alpha} . The revision of the widths of the two more relevant broad resonances in the 15N({\alpha},{\gamma})19F reaction presented in this work is the first step toward a more firm determination of the reaction rate. At present, the residual uncertainty at the temperatures of the ^{19}F stellar nucleosynthesis is dominated by the uncertainties affecting the Direct Capture component and the 364 keV narrow resonance, both so far investigated only through indirect experiments.Comment: 8 pages, 11 figures. Accepted for publication in PR

    Relationships between constructional and visuospatial abilities in normal subjects and in focal brain-damaged patients.

    Get PDF
    We tested 125 normal subjects and 24 right and 22 left focal brain-damaged patients (RBD and LBD) on the Rey figure copying test and on a battery of perceptual and representational visuospatial tasks, in search of relationships between constructional and visuospatial abilities. Selected RBD and LBD were not affected by severe aphasia, unilateral spatial neglect or general intellectual defects. Both RBD and LBD showed defective performances on the constructional task with respect to normal subjects. As regards visuospatial tasks, both patient groups scored lower than normal subjects in judging angle width and mentally assembling geometrical figures; moreover, RBD, but not LBD, achieved scores significantly lower than healthy controls in judging line orientation and analyzing geometrical figures. Post-hoc comparisons did not reveal any significant differences between RBD and LBD. Multiple regression analysis showed that visuospatial abilities correlate with accuracy in copying geometrical drawings in normal subjects and in RBD, but not in LBD. From a theoretical perspective, these findings support the idea that visual perceptual and representational abilities do play a role in constructional skills
    corecore