23 research outputs found

    Crystal chemistry and chemical order in ternary quasicrystals and approximants

    Get PDF
    In this work we review our current understanding of structure, stability and formation of icosahedral quasicrystals and approximants. The work has special emphasis on Cd–Yb type phases, but several concepts are generalized to other families of icosahedral quasicrystals and approximants. The paper handles topics such as chemical order and site preference at the cluster level for ternary phases, valence electron concentration and its influence on formation and composition, fundamental building blocks and cluster linkages, and the similarities and differences between different families of icosahedral quasicrystals and approximants

    Chemical speciation in Gd-Cd-M (M=Zn, Au) quasicrystal approximants

    No full text
    We investigated the effect of partial replacement of Cd by M=Au and Zn in the crystal structure of the 1/1 Tsai-type quasicrystal approximant (AC) GdCd6. Compositionally homogeneous single crystal samples Gd(Cd0.87Zn0.13(1))(6) and Gd(Cd0.80Au0.20(1))(6) were grown from melts Gd-5(Cd0.8Zn0.2)(100) and Gd-1(Cd0.9Au0.1)(100), respectively, and isolated by centrifugation. The M for Cd substitution in GdCd6 is accompanied with a sizeable reduction of the cubic unit cell parameter, from 15.514(2) angstrom to 15.329(1) angstrom (Zn) and 15.314(1) angstrom (Au). Site preferences were established from single crystal X-ray diffraction data. A clear preference of atomic sites for Au and Zn is noted which is compared to earlier reported Yb(Cd0.75Mg0.25)(6). Three and two out of in total seven crystallographic sites defining the Cd partial structure accept preferably metals more and less electronegative than Cd, respectively, and are classified as negatively and positively polarized sites in the binary 1/1 AC

    Structural Analysis of the Gd-Au-Al 1/1 Quasicrystal Approximant Phase across Its Composition-Driven Magnetic Property Changes

    No full text
    Gd14AuxAl86-x Tsai-type 1/1 quasicrystal approximants (ACs) exhibit three magnetic orders that can be finely tuned by the valence electron concentration (e/a ratio). This parameter has been considered to be crucial for controlling the long-range magnetic order in quasicrystals (QCs) and ACs. However, the nonlinear trend of the lattice parameter as a function of Au concentration suggests that Gd14AuxAl86-x 1/1 ACs are not following a conventional solid solution behavior. We investigated Gd14AuxAl86-x samples with x values of 52, 53, 56, 61, 66, and 73 by single-crystal X-ray diffraction. Our analysis reveals that increasing Au/Al ordering with increasing x leads to distortions in the icosahedral shell built of the Gd atoms and that trends observed in the interatomic Gd-Gd distances closely correlate with the magnetic property changes across different x values. Our results demonstrate that the e/a ratio alone may be an oversimplified concept for investigating the long-range magnetic order in 1/1 ACs and QCs and that the mixing behavior of the nonmagnetic elements Au and Al plays a significant role in influencing the magnetic behavior of the Gd1(4)Au(x)Al(86-x) 1/1 AC system. These findings will contribute to improved understanding towards tailoring magnetic properties in emerging materials

    Eu Doping in the GdCd7.88 Quasicrystal and Its Approximant Crystal GdCd6

    No full text
    The effect of Eu doping in the Tsai quasicrystal (QC) GdCd7.88 and its periodic 1/1 approximant crystal (AC) GdCd6 are investigated. This represents the first synthesis of Eu-containing stable QC samples, where three samples with the final composition Gd1-xEuxCd7.6±α at Eu doping concentrations x = 0.06, 0.13, and 0.19 are obtained (α ∼ 0.2). They are compared to two 1/1 ACs with compositions Gd1-xEuxCd6 (x = 0.12, 0.16). In addition, a new type of 1/1 AC, differing only by the inclusion of extra Cd sites unique to the Eu4Cd25 1/1 AC, has been discovered and synthesized for the concentrations Gd1-xEuxCd6+δ (x = 0.25, 0.33, 0.45, 0.69, 0.73, and 0 < δ ≤ 0.085). Due to the preferred cube morphology of its single grains, we refer to them as c-type 1/1 ACs and to the conventional standard ones as s-type. In both QCs and s-type ACs, the Eu content appears to saturate at a concentration of similar to 20%. On the other hand, any Gd| Eu ratio is allowed in the c-type ACs, varying continuously between GdCd6 and Eu4Cd25. We describe and contrast the changes in composition, atomic structure, specific heat, and magnetic properties induced by Eu doping in the quasicrystalline phase and the s-type and c-type 1/1 ACs. By comparing our results to the literature data, we propose that the occupancy of the extra Cd sites can be used to predict the stability of Tsai-type quasicrystalline phases

    Structural-electrochemical relations in the aqueous copper hexacyanoferrate-zinc system examined by synchrotron X-ray diffraction

    No full text
    The storage process of Zn2+ in the Prussian blue analogue (PBA) copper hexacyanoferrate (Cu[Fe(CN)6]2/3-nH2O - CuHCF) framework structure in a context of rechargeable aqueous batteries is examined by means of in operando synchrotron X-ray diffraction. Via sequential unit-cell parameter refinements of time-resolved diffraction data, it is revealed that the step-profile of the cell output voltage curves during repeated electrochemical insertion and removal of Zn2+ in the CuHCF host structure is associated with a non-linear contraction and expansion of the unit-cell in the range 0.36 < x < 1.32 for Znx/3Cu[Fe(CN)6]2/3-nH2O. For a high insertion cation content there is no apparent change in the unit-cell contraction. Furthermore, a structural analysiswith respect to the occupancies of possible Zn2+ sites suggests that the Fe(CN)6 vacancies within the CuHCF framework play an important role in the structural-electrochemical behavior of this particular system. More specifically, it is observed that Zn2+ swaps position during electrochemical cycling, hopping between cavity sites to vacant ferricyanide sites

    Manganese Pyrosilicates as Novel Positive Electrode Materials for Na-Ion Batteries

    No full text
    A carbon-coated pyrosilicate, Na2Mn2Si2O7/C, was synthesized and characterized for use as a new positive-electrode material for sodium ion batteries. The material consists of primary 20-80 nm particles embedded in a ≈10 nm-thick conductive carbon matrix. Reversible insertion of Na+ ions is clearly demonstrated with ≈25% of its theoretical capacity (165 mAh/g) accessible at room temperature at a low cycling rate. The material yields an average potential of 3.3 V vs. Na+/Na on charge and 2.2 V on discharge. DFT calculations predict an equilibrium potential for Na2Mn2Si2O7 in the range of 2.8-3.0 V vs. Na+/Na, with a possibility of a complete flip in the connectivity of neighboring Mn-polyhedra – from edge-sharing to disconnected and vice versa. This significant rearrangement in Mn coordination  (≈2 Å) and large volume contraction (>10%) could explain our inability to fully desodiate the material, and illustrates well the need for a new electrode design strategy beyond the conventional “down-sizing/coating” procedure

    Nonequilibrium dynamical behavior in noncoplanar magnets with chiral spin texture

    No full text
    We observe nonequilibrium dynamical magnetic behavior in the magnetically ordered phase of a Tsai-type Tb-Au-Si quasicrystal approximant system. The magnetic texture in the ordered phase is found to exhibit scalar spin chirality (SSC) order, inferring that SSC is the order parameter of the present magnetic system. We further find that the introduction of “pseudo-Tsai” clusters, associated with additional Tb atoms in the structure, induces spin-glass dynamics. We discuss the observed dynamical magnetic behavior in the Tb-Au-Si systems, considering the effect of the pseudo-Tsai clusters on the magnetic configuration and local spin chirality

    Synthesis-structure relationships in Li- and Mn-rich layered oxides : phase evolution, superstructure ordering and stacking faults

    No full text
    Li- and Mn-rich layered oxides are promising positive electrode materials for future Li-ion batteries. The presence of crystallographic features such as cation-mixing and stacking faults in these compounds make them highly susceptible to synthesis-induced structural changes. Consequently, significant variations exist in the reported structure of these compounds that complicate the understanding of how the crystallographic structure influences its properties. This work investigates the synthesis-structure relations for three widely investigated Li- and Mn-rich layered oxides: Li2MnO3, Li1.2Mn0.6Ni0.2O2 and Li1.2Mn0.54Ni0.13Co0.13O2. For each compound, the average structure is compared between two synthetic routes of differing degrees of precursor mixing and four annealing protocols. Furthermore, thermodynamic and synthesis-specific kinetic factors governing the equilibrium crystallography of each composition are considered. It was found that the structures of these compounds are thermodynamically metastable under the synthesis conditions employed. In addition to a driving force to reduce stacking faults in the structure, these compositions also exhibited a tendency to undergo structural transformations to more stable phases under more intense annealing conditions. Increasing the compositional complexity introduced a kinetic barrier to structural ordering, making Li1.2Mn0.6Ni0.2O2 and Li1.2Mn0.54Ni0.13Co0.13O2 generally more faulted relative to Li2MnO3. Additionally, domains with different degrees of faulting were found to co-exist in the compounds. This study offers insight into the highly synthesis-dependent subtle structural complexities present in these compounds and complements the substantial efforts that have been undertaken to understand and optimise its electrochemical properties

    Examination of the critical behavior and magnetocaloric effect of the ferromagnetic Gd-Au-Si quasicrystal approximants

    No full text
    We investigate the critical behavior and magnetocaloric effects of the Gd-Au-Si (GAS) ferromagnetic quasicrystal approximants, Gd13.7Au72.7Si13.6 [referred to as GAS(0)] and Gd15.4Au68.6Si16.0 [GAS(100)]. The former is a conventional Tsai-type 1/1 approximant crystal, while the latter has a slightly different atomic decoration from the Tsai type (thus referred to as “pseudo-Tsai” type). Their critical exponents at the ferromagnetic transitions are close to those of the mean-field theory. Both GAS systems exhibit an interesting magnetic-field dependence of the specific heat, which is reflected in the behavior of their magnetocaloric effect (MCE). The MCE is characterized by an adiabatic cooling (heating) effect over a relatively broad temperature range below ∼30 K, which stems from a broad feature in the specific heat
    corecore