8 research outputs found

    Deep-sea hydrothermal vents as natural egg-case incubators at the Galapagos Rift

    Get PDF
    The discovery of deep-sea hydrothermal vents in 1977 challenged our views of ecosystem functioning and yet, the research conducted at these extreme and logistically challenging environments still continues to reveal unique biological processes. Here, we report for the first time, a unique behavior where the deep-sea skate, Bathyraja spinosissima, appears to be actively using the elevated temperature of a hydrothermal vent environment to naturally “incubate” developing egg-cases. We hypothesize that this behavior is directly targeted to accelerate embryo development time given that deep-sea skates have some of the longest egg incubation times reported for the animal kingdom. Similar egg incubating behavior, where eggs are incubated in volcanically heated nesting grounds, have been recorded in Cretaceous sauropod dinosaurs and the rare avian megapode. To our knowledge, this is the first time incubating behavior using a volcanic source is recorded for the marine environment

    Identification of rays through DNA barcoding: an application for ecologists

    Get PDF
    DNA barcoding potentially offers scientists who are not expert taxonomists a powerful tool to support the accuracy of field studies involving taxa that are diverse and difficult to identify. The taxonomy of rays has received reasonable attention in Australia, although the fauna in remote locations such as Ningaloo Reef, Western Australia is poorly studied and the identification of some species in the field is problematic. Here, we report an application of DNA-barcoding to the identification of 16 species (from 10 genera) of tropical rays as part of an ecological study. Analysis of the dataset combined across all samples grouped sequences into clearly defined operational taxonomic units, with two conspicuous exceptions: the Neotrygon kuhlii species complex and the Aetobatus species complex. In the field, the group that presented the most difficulties for identification was the spotted whiptail rays, referred to as the ‘uarnak’ complex. Two sets of problems limited the successful application of DNA barcoding: (1) the presence of cryptic species, species complexes with unresolved taxonomic status and intra-specific geographical variation, and (2) insufficient numbers of entries in online databases that have been verified taxonomically, and the presence of lodged sequences in databases with inconsistent names. Nevertheless, we demonstrate the potential of the DNA barcoding approach to confirm field identifications and to highlight species complexes where taxonomic uncertainty might confound ecological data

    Deep-sea hydrothermal vents as natural egg-case incubators at the Galapagos Rift

    No full text
    The discovery of deep-sea hydrothermal vents in 1977 challenged our views of ecosystem functioning and yet, the research conducted at these extreme and logistically challenging environments still continues to reveal unique biological processes. Here, we report for the first time, a unique behavior where the deep-sea skate, Bathyraja spinosissima, appears to be actively using the elevated temperature of a hydrothermal vent environment to naturally "incubate" developing egg-cases. We hypothesize that this behavior is directly targeted to accelerate embryo development time given that deep-sea skates have some of the longest egg incubation times reported for the animal kingdom. Similar egg incubating behavior, where eggs are incubated in volcanically heated nesting grounds, have been recorded in Cretaceous sauropod dinosaurs and the rare avian megapode. To our knowledge, this is the first time incubating behavior using a volcanic source is recorded for the marine environment.</p

    Phylogenetic relationship of rays Part I.

    No full text
    <p>Reduced view of the neighbour-joining tree based on COI sequence data using Kimura-two-parameter substitution model (left); the first part of the tree (right). Names in red are the sequences obtained in this study, the corrected nomenclature is in () and given in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0036479#pone.0036479.s002" target="_blank">Table S2</a>.</p

    Multidimensional Scaling (MDS) of <i>Neotrygon kuhlii.</i>

    No full text
    <p>Ningaloo Reef (NR), northern Indian Ocean (NIO), Great Barrier Reef (GBR), Japan (Jap), Southeast Asia (SEA);.</p

    Phylogenetic relationship of rays Part III.

    No full text
    <p>Third part of the Neighbour-joining tree based on COI sequence data using Kimura-two-parameter substitution model (left); the third part of the tree (right). Names in red are the sequences obtained in this study, the corrected nomenclature is in () and given in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0036479#pone.0036479.s002" target="_blank">Table S2</a>.</p

    Evolution of the Galapagos in the anthropocene

    No full text
    The Galapagos Islands inspired the theory of evolution by means of natural selection; now in the Anthropocene, the Galapagos represent an important natural laboratory to understand ecosystem resilience in the face of climate extremes and enable effective socio-ecological co-evolution under climate change
    corecore