55 research outputs found

    The Role of Diffuse Optical Spectroscopy in the Clinical Management of Breast Cancer

    Get PDF
    Diffuse optical spectroscopy (DOS) of breast tissue provides quantitative, functional information based on optical absorption and scattering properties that cannot be obtained with other radiographic methods. DOS-measured absorption spectra are used to determine the tissue concentrations of deoxyhemoglobin (Hb-R), oxyhemoglobin (Hb-O(2)), lipid, and water (H(2)O), as well as to provide an index of tissue hemoglobin oxygen saturation (S(t)O(2)). Tissue-scattering spectra provide insight into epithelial, collagen, and lipid contributions to breast density. Clinical studies of women with malignant tumors show that DOS is sensitive to processes such as increased tissue vascularization, hypoxia, and edema. In studies of healthy women, DOS detects variations in breast physiology associated with menopausal status, menstrual cycle changes, and hormone replacement. Current research involves using DOS to monitor tumor response to therapy and the co-registration of DOS with magnetic resonance imaging. By correlating DOS-derived parameters with lesion pathology and specific molecular markers, we anticipate that composite “tissue optical indices” can be developed that non-invasively characterize both tumor and normal breast-tissue function

    Tissue phantoms in multicenter clinical trials for diffuse optical technologies

    Get PDF
    Tissue simulating phantoms are an important part of instrumentation validation, standardization/training and clinical translation. Properly used, phantoms form the backbone of sound quality control procedures. We describe the development and testing of a series of optically turbid phantoms used in a multi-center American College of Radiology Imaging Network (ACRIN) clinical trial of Diffuse Optical Spectroscopic Imaging (DOSI). The ACRIN trial is designed to measure the response of breast tumors to neoadjuvant chemotherapy. Phantom measurements are used to determine absolute instrument response functions during each measurement session and assess both long and short-term operator and instrument reliability

    Tissue Oxygen Saturation Predicts Response to Breast Cancer Neoadjuvant Chemotherapy within 10 Days of Treatment

    Get PDF
    Ideally, neoadjuvant chemotherapy (NAC) assessment should predict pathologic complete response (pCR), a surrogate clinical endpoint for 5-year survival, as early as possible during typical 3- to 6-month breast cancer treatments. We introduce and demonstrate an approach for predicting pCR within 10 days of initiating NAC. The method uses a bedside diffuse optical spectroscopic imaging (DOSI) technology and logistic regression modeling. Tumor and normal tissue physiological properties were measured longitudinally throughout the course of NAC in 33 patients enrolled in the American College of Radiology Imaging Network multicenter breast cancer DOSI trial (ACRIN-6691). An image analysis scheme, employing z-score normalization to healthy tissue, produced models with robust predictions. Notably, logistic regression based on z-score normalization using only tissue oxygen saturation (StO2) measured within 10 days of the initial therapy dose was found to be a significant predictor of pCR (AUC  =  0.92; 95% CI: 0.82 to 1). This observation suggests that patients who show rapid convergence of tumor tissue StO2 to surrounding tissue StO2 are more likely to achieve pCR. This early predictor of pCR occurs prior to reductions in tumor size and could enable dynamic feedback for optimization of chemotherapy strategies in breast cancer

    Performance Assessment of Diffuse Optical Spectroscopic Imaging Instruments in a 2-Year Multicenter Breast Cancer Trial

    Get PDF
    We present a framework for characterizing the performance of an experimental imaging technology, diffuse optical spectroscopic imaging (DOSI), in a 2-year multicenter American College of Radiology Imaging Network (ACRIN) breast cancer study (ACRIN-6691). DOSI instruments combine broadband frequency-domain photon migration with time-independent near-infrared (650 to 1000 nm) spectroscopy to measure tissue absorption and reduced scattering spectra and tissue hemoglobin, water, and lipid composition. The goal of ACRIN-6691 was to test the effectiveness of optically derived imaging endpoints in predicting the final pathologic response of neoadjuvant chemotherapy (NAC). Sixty patients were enrolled over a 2-year period at participating sites and received multiple DOSI scans prior to and during 3- to 6-month NAC. The impact of three sources of error on accuracy and precision, including different operators, instruments, and calibration standards, was evaluated using a broadband reflectance standard and two different solid tissue-simulating optical phantoms. Instruments showed \u3c 0.0010 mm−1 (10.3%) and 0.06 mm−1 (4.7%) deviation in broadband absorption and reduced scattering, respectively, over the 2-year duration of ACRIN-6691. These variations establish a useful performance criterion for assessing instrument stability. The proposed procedures and tests are not limited to DOSI; rather, they are intended to provide methods to characterize performance of any instrument used in translational optical imaging

    Imaging in breast cancer: Diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy

    Get PDF
    Diffuse optical spectroscopy (DOS) and diffuse optical imaging (DOI) are non-invasive diagnostic techniques that employ near-infrared (NIR) light to quantitatively characterize the optical properties of centimeter-thick, multiple-scattering tissues. Although NIR was first applied to breast diaphanography more than 70 years ago, quantitative optical methods employing time- or frequency-domain 'photon migration' technologies have only recently been used for breast imaging. Because their performance is not limited by mammographic density, optical methods can provide new insight regarding tissue functional changes associated with the appearance, progression, and treatment of breast cancer, particularly for younger women and high-risk subjects who may not benefit from conventional imaging methods. This paper reviews the principles of diffuse optics and describes the development of broadband DOS for quantitatively measuring the optical and physiological properties of thick tissues. Clinical results are shown highlighting the sensitivity of diffuse optics to malignant breast tumors in 12 pre-menopausal subjects ranging in age from 30 to 39 years and a patient undergoing neoadjuvant chemotherapy for locally advanced breast cancer. Significant contrast was observed between normal and tumor regions of tissue for deoxy-hemoglobin (p = 0.005), oxy-hemoglobin (p = 0.002), water (p = 0.014), and lipids (p = 0.0003). Tissue hemoglobin saturation was not found to be a reliable parameter for distinguishing between tumor and normal tissues. Optical data were converted into a tissue optical index that decreased 50% within 1 week in response to neoadjuvant chemotherapy. These results suggest a potential role for diffuse optics as a bedside monitoring tool that could aid the development of new strategies for individualized patient care
    corecore