1,322 research outputs found

    Barkhausen noise from zigzag domain walls

    Full text link
    We investigate the Barkhausen noise in ferromagnetic thin films with zigzag domain walls. We use a cellular automaton model that describes the motion of a zigzag domain wall in an impure ferromagnetic quasi-two dimensional sample with in-plane uniaxial magnetization at zero temperature, driven by an external magnetic field. The main ingredients of this model are the dipolar spin-spin interactions and the anisotropy energy. A power law behavior with a cutoff is found for the probability distributions of size, duration and correlation length of the Barkhausen avalanches, and the critical exponents are in agreement with the available experiments. The link between the size and the duration of the avalanches is analyzed too, and a power law behavior is found for the average size of an avalanche as a function of its duration.Comment: 11 pages, 12 figure

    Analyzing intramolecular vibrational energy redistribution via the overlap intensity-level velocity correlator

    Full text link
    Numerous experimental and theoretical studies have established that intramolecular vibrational energy redistribution (IVR) in isolated molecules has a heirarchical tier structure. The tier structure implies strong correlations between the energy level motions of a quantum system and its intensity-weighted spectrum. A measure, which explicitly accounts for this correaltion, was first introduced by one of us as a sensitive probe of phase space localization. It correlates eigenlevel velocities with the overlap intensities between the eigenstates and some localized state of interest. A semiclassical theory for the correlation is developed for systems that are classically integrable and complements earlier work focusing exclusively on the chaotic case. Application to a model two dimensional effective spectroscopic Hamiltonian shows that the correlation measure can provide information about the terms in the molecular Hamiltonian which play an important role in an energy range of interest and the character of the dynamics. Moreover, the correlation function is capable of highlighting relevant phase space structures including the local resonance features associated with a specific bright state. In addition to being ideally suited for multidimensional systems with a large density of states, the measure can also be used to gain insights into the phase space transport and localization. It is argued that the overlap intensity-level velocity correlation function provides a novel way of studying vibrational energy redistribution in isolated molecules. The correlation function is ideally suited to analyzing the parametric spectra of molecules in external fields.Comment: 16 pages, 13 figures (low resolution

    Resolving the Crab pulsar wind nebula at teraelectronvolt energies

    Full text link
    The Crab nebula is one of the most-studied cosmic particle accelerators, shining brightly across the entire electromagnetic spectrum up to very-high-energy gamma rays1,2. It is known from observations in the radio to gamma-ray part of the spectrum that the nebula is powered by a pulsar, which converts most of its rotational energy losses into a highly relativistic outflow. This outflow powers a pulsar wind nebula, a region of up to ten light-years across, filled with relativistic electrons and positrons. These particles emit synchrotron photons in the ambient magnetic field and produce very-high-energy gamma rays by Compton up-scattering of ambient low-energy photons. Although the synchrotron morphology of the nebula is well established, it has not been known from which region the very-high-energy gamma rays are emitted3,4,5,6,7,8. Here we report that the Crab nebula has an angular extension at gamma-ray energies of 52 arcseconds (assuming a Gaussian source width), much larger than at X-ray energies. This result closes a gap in the multi-wavelength coverage of the nebula, revealing the emission region of the highest-energy gamma rays. These gamma rays enable us to probe a previously inaccessible electron and positron energy range. We find that simulations of the electromagnetic emission reproduce our measurement, pro

    The gas turbulence in planetary nebulae: quantification and multi-D maps from long-slit, wide-spectral range echellogram

    Full text link
    This methodological paper is part of a short series dedicated to the long-standing astronomical problem of de-projecting the bi-dimensional, apparent morphology of a three-dimensional distribution of gas. We focus on the quantification and spatial recovery of turbulent motions in planetary nebulae (and other classes of expanding nebulae) by means of long-slit echellograms over a wide spectral range. We introduce some basic theoretical notions, discuss the observational methodology, and develop an accurate procedure disentangling all broadening components of the velocity profile in all spatial positions of each spectral image. This allows us to extract random, non-thermal motions at unprecedented accuracy, and to map them in 1-, 2- and 3-dimensions. We present the solution to practical problems in the multi-dimensional turbulence-analysis of a testing-planetary nebula (NGC 7009), using the three-step procedure (spatio-kinematics, tomography, and 3-D rendering) developed at the Astronomical Observatory of Padua. In addition, we introduce an observational paradigm valid for all spectroscopic parameters in all classes of expanding nebulae. Unsteady, chaotic motions at a local scale constitute a fundamental (although elusive) kinematical parameter of each planetary nebula, providing deep insights on its different shaping agents and mechanisms, and on their mutual interaction. The detailed study of turbulence, its stratification within a target and (possible) systematic variation among different sub-classes of planetary nebulae deserve long-slit, multi-position angle, wide-spectral range echellograms containing emissions at low-, medium-, and high-ionization, to be analyzed pixel-to-pixel with a straightforward and versatile methodology, extracting all the physical information stored in each frame at best.Comment: 11 page, 10 figures, A&A in pres

    The highly polarized open cluster Trumpler 27

    Get PDF
    We have carried out multicolor linear polarimetry (UBVRI) of the brightest stars in the area of the open cluster Trumpler 27. Our data show a high level of polarization in the stellar light with a considerable dispersion, from P=4P = 4% to P=9.5P = 9.5%. The polarization vectors of the cluster members appear to be aligned. Foreground polarization was estimated from the data of some non-member objects, for which two different components were resolved: the first one associated with a dust cloud close to the Sun producing Pλmax=1.3P_{\lambda max}=1.3% and θ=146\theta=146 degrees, and a second component, the main source of polarization for the cluster members, originated in another dust cloud, which polarizes the light in the direction of θ=29.5\theta= 29.5 degrees. From a detailed analysis, we found that the two components have associated values EBV<0.45E_{B-V} < 0.45 for the first one, and EBV>0.75E_{B-V} > 0.75 for the other. Due the difference in the orientation of both polarization vectors, almost 90 degrees (180 degrees at the Stokes representation), the first cloud (θ146\theta \sim 146 degrees) depolarize the light strongly polarized by the second one (θ29.5\theta \sim 29.5 degrees).Comment: 12 Pages, 6 Figures, 2 tables (9 Pages), accepted for publication in A

    Absolute properties of the binary system BB Pegasi

    Full text link
    We present a ground based photometry of the low-temperature contact binary BB Peg. We collected all times of mid-eclipses available in literature and combined them with those obtained in this study. Analyses of the data indicate a period increase of 3.0(1) x 10^{-8} days/yr. This period increase of BB Peg can be interpreted in terms of the mass transfer 2.4 x 10^{-8} Ms yr^{-1} from the less massive to the more massive component. The physical parameters have been determined as Mc = 1.42 Ms, Mh = 0.53 Ms, Rc = 1.29 Rs, Rh = 0.83 Rs, Lc = 1.86 Ls, and Lh = 0.94 Ls through simultaneous solution of light and of the radial velocity curves. The orbital parameters of the third body, that orbits the contact system in an eccentric orbit, were obtained from the period variation analysis. The system is compared to the similar binaries in the Hertzsprung-Russell and Mass-Radius diagram.Comment: 17 pages, 3 figures, accepted for Astronomical Journa

    A Uniform Approximation for the Fidelity in Chaotic Systems

    Full text link
    In quantum/wave systems with chaotic classical analogs, wavefunctions evolve in highly complex, yet deterministic ways. A slight perturbation of the system, though, will cause the evolution to diverge from its original behavior increasingly with time. This divergence can be measured by the fidelity, which is defined as the squared overlap of the two time evolved states. For chaotic systems, two main decay regimes of either Gaussian or exponential behavior have been identified depending on the strength of the perturbation. For perturbation strengths intermediate between the two regimes, the fidelity displays both forms of decay. By applying a complementary combination of random matrix and semiclassical theory, a uniform approximation can be derived that covers the full range of perturbation strengths. The time dependence is entirely fixed by the density of states and the so-called transition parameter, which can be related to the phase space volume of the system and the classical action diffusion constant, respectively. The accuracy of the approximations are illustrated with the standard map.Comment: 16 pages, 4 figures, accepted in J. Phys. A, special edition on Random Matrix Theor

    Hamiltonian dynamics and geometry of phase transitions in classical XY models

    Full text link
    The Hamiltonian dynamics associated to classical, planar, Heisenberg XY models is investigated for two- and three-dimensional lattices. Besides the conventional signatures of phase transitions, here obtained through time averages of thermodynamical observables in place of ensemble averages, qualitatively new information is derived from the temperature dependence of Lyapunov exponents. A Riemannian geometrization of newtonian dynamics suggests to consider other observables of geometric meaning tightly related with the largest Lyapunov exponent. The numerical computation of these observables - unusual in the study of phase transitions - sheds a new light on the microscopic dynamical counterpart of thermodynamics also pointing to the existence of some major change in the geometry of the mechanical manifolds at the thermodynamical transition. Through the microcanonical definition of the entropy, a relationship between thermodynamics and the extrinsic geometry of the constant energy surfaces ΣE\Sigma_E of phase space can be naturally established. In this framework, an approximate formula is worked out, determining a highly non-trivial relationship between temperature and topology of the ΣE\Sigma_E. Whence it can be understood that the appearance of a phase transition must be tightly related to a suitable major topology change of the ΣE\Sigma_E. This contributes to the understanding of the origin of phase transitions in the microcanonical ensemble.Comment: in press on Physical Review E, 43 pages, LaTeX (uses revtex), 22 PostScript figure

    Riemannian theory of Hamiltonian chaos and Lyapunov exponents

    Full text link
    This paper deals with the problem of analytically computing the largest Lyapunov exponent for many degrees of freedom Hamiltonian systems. This aim is succesfully reached within a theoretical framework that makes use of a geometrization of newtonian dynamics in the language of Riemannian geometry. A new point of view about the origin of chaos in these systems is obtained independently of homoclinic intersections. Chaos is here related to curvature fluctuations of the manifolds whose geodesics are natural motions and is described by means of Jacobi equation for geodesic spread. Under general conditions ane effective stability equation is derived; an analytic formula for the growth-rate of its solutions is worked out and applied to the Fermi-Pasta-Ulam beta model and to a chain of coupled rotators. An excellent agreement is found the theoretical prediction and the values of the Lyapunov exponent obtained by numerical simulations for both models.Comment: RevTex, 40 pages, 8 PostScript figures, to be published in Phys. Rev. E (scheduled for November 1996

    Proteasome stress sensitizes malignant pleural mesothelioma cells to bortezomib-induced apoptosis

    Get PDF
    Abstract Based on promising results in preclinical models, clinical trials have been performed to evaluate the efficacy of the first-in-class proteasome inhibitor bortezomib towards malignant pleural mesothelioma (MPM), an aggressive cancer arising from the mesothelium of the serous cavities following exposure to asbestos. Unexpectedly, only minimal therapeutic benefits were observed, thus implicating that MPM harbors inherent resistance mechanisms. Identifying the molecular bases of this primary resistance is crucial to develop novel pharmacologic strategies aimed at increasing the vulnerability of MPM to bortezomib. Therefore, we assessed a panel of four human MPM lines with different sensitivity to bortezomib, for functional proteasome activity and levels of free and polymerized ubiquitin. We found that highly sensitive MPM lines display lower proteasome activity than more bortezomib-resistant clones, suggesting that reduced proteasomal capacity might contribute to the intrinsic susceptibility of mesothelioma cells to proteasome inhibitors-induced apoptosis. Moreover, MPM equipped with fewer active proteasomes accumulated polyubiquitinated proteins, at the expense of free ubiquitin, a condition known as proteasome stress, which lowers the cellular apoptotic threshold and sensitizes mesothelioma cells to bortezomib-induced toxicity as shown herein. Taken together, our data suggest that an unfavorable load-versus-capacity balance represents a critical determinant of primary apoptotic sensitivity to bortezomib in MPM
    corecore