266 research outputs found

    Design and Characterization of a Textile Electrode System for the Detection of High-Density sEMG

    Get PDF
    Muscle activity monitoring in dynamic conditions is a crucial need in different scenarios, ranging from sport to rehabilitation science and applied physiology. The acquisition of surface electromyographic (sEMG) signals by means of grids of electrodes (High-Density sEMG, HD-sEMG) allows obtaining relevant information on muscle function and recruitment strategies. During dynamic conditions, this possibility demands both a wearable and miniaturized acquisition system and a system of electrodes easy to wear, assuring a stable electrode-skin interface. While recent advancements have been made on the former issue, detection systems specifically designed for dynamic conditions are at best incipient. The aim of this work is to design, characterize, and test a wearable, HD-sEMG detection system based on textile technology. A 32-electrodes, 15 mm inter-electrode distance textile grid was designed and prototyped. The electrical properties of the material constituting the detection system and of the electrode-skin interface were characterized. The quality of sEMG signals was assessed in both static and dynamic contractions. The performance of the textile detection system was comparable to that of conventional systems in terms of stability of the traces, properties of the electrode-skin interface and quality of the collected sEMG signals during quasi-isometric and highly dynamic tasks

    Quantification of cortical proprioceptive processing through a wireless and miniaturized EEG amplifier

    Get PDF
    Corticokinematic coherence (CKC) is computed between limb kinematics and cortical activity (e.g. MEG, EEG), and it can be used to detect, quantify and localize the cortical processing of proprioceptive afference arising from the body. EEG-based studies on CKC have been limited to lab environments due to bulky, non-portable instrumentations. We recently proposed a wireless and miniaturized EEG acquisition system aimed at enabling EEG studies outside the laboratory. The purpose of this work is to compare the EEG-based CKC values obtained with this device with a conventional wired-EEG acquisition system to validate its use in the quantification of cortical proprioceptive processing. Eleven healthy right-handed participants were recruited (six males, four females, age range: 24-40 yr). A pneumatic-movement actuator was used to evoke right index-finger flexion-extension movement at 3 Hz for 4 min. The task was repeated both with the wireless-EEG and wired-EEG devices using the same 30-channel EEG cap preparation. CKC was computed between the EEG and finger acceleration. CKC peaked at the movement frequency and its harmonics, being statistically significant (p < 0.05) in 8-10 out of 11 participants. No statistically significant differences (p < 0.05) were found in CKC strength between wireless-EEG (range 0.03-0.22) and wired-EEG (0.02-0.33) systems, that showed a good agreement between the recording systems (3 Hz: r = 0.57, p = 0.071, 6 Hz: r = 0.82, p = 0.003). As expected, CKC peaked in sensors above the left primary sensorimotor cortex contralateral to the moved right index finger. As the wired-EEG device, the tested wireless-EEG system has proven feasible to quantify CKC, and thus can be used as a tool to study proprioception in the human neocortex. Thanks to its portability, the wireless-EEG used in this study has the potential to enable the examination of cortical proprioception in more naturalistic conditions outside the laboratory environment. Clinical Relevance - Our study will contribute to provide innovative technological foundations for future unobtrusive EEG recordings in naturalistic conditions to examine human sensorimotor system

    Design and validation of a wireless Body Sensor Network for integrated EEG and HD-sEMG acquisitions

    Get PDF
    Sensorimotor integration is the process through which the human brain plans the motor program execution according to external sources. Within this context, corticomuscular and corticokinematic coherence analyses are common methods to investigate the mechanism underlying the central control of muscle activation. This requires the synchronous acquisition of several physiological signals, including EEG and sEMG. Nevertheless, physical constraints of the current, mostly wired, technologies limit their application in dynamic and naturalistic contexts. In fact, although many efforts were made in the development of biomedical instrumentation for EEG and HD-sEMG signal acquisition, the need for an integrated wireless system is emerging. We hereby describe the design and validation of a new fully wireless body sensor network for the integrated acquisition of EEG and HD-sEMG signals. This Body Sensor Network is composed of wireless bio-signal acquisition modules, named sensor units, and a set of synchronization modules used as a general-purpose system for time-locked recordings. The system was characterized in terms of accuracy of the synchronization and quality of the collected signals. An in-depth characterization of the entire system and an end-to-end comparison of the wireless EEG sensor unit with a wired benchmark EEG device were performed. The proposed device represents an advancement of the State-of-the-Art technology allowing the integrated acquisition of EEG and HD-sEMG signals for the study of sensorimotor integration

    Specifying and Verifying Concurrent Algorithms with Histories and Subjectivity

    Full text link
    We present a lightweight approach to Hoare-style specifications for fine-grained concurrency, based on a notion of time-stamped histories that abstractly capture atomic changes in the program state. Our key observation is that histories form a partial commutative monoid, a structure fundamental for representation of concurrent resources. This insight provides us with a unifying mechanism that allows us to treat histories just like heaps in separation logic. For example, both are subject to the same assertion logic and inference rules (e.g., the frame rule). Moreover, the notion of ownership transfer, which usually applies to heaps, has an equivalent in histories. It can be used to formally represent helping---an important design pattern for concurrent algorithms whereby one thread can execute code on behalf of another. Specifications in terms of histories naturally abstract granularity, in the sense that sophisticated fine-grained algorithms can be given the same specifications as their simplified coarse-grained counterparts, making them equally convenient for client-side reasoning. We illustrate our approach on a number of examples and validate all of them in Coq.Comment: 17 page

    On the Semantics of Snapshot Isolation

    Get PDF
    Snapshot isolation (SI) is a standard transactional consistency model used in databases, distributed systems and software transactional memory (STM). Its semantics is formally defined both declaratively as an acyclicity axiom, and operationally as a concurrent algorithm with memory bearing timestamps. We develop two simpler equivalent operational definitions of SI as lock-based reference implementations that do not use timestamps. Our first locking implementation is prescient in that requires a priori knowledge of the data accessed by a transaction and carries out transactional writes eagerly (in-place). Our second implementation is non-prescient and performs transactional writes lazily by recording them in a local log and propagating them to memory at commit time. Whilst our first implementation is simpler and may be better suited for developing a program logic for SI transactions, our second implementation is more practical due to its non-prescience. We show that both implementations are sound and complete against the declarative SI specification and thus yield equivalent operational definitions for SI. We further consider, for the first time formally, the use of SI in a context with racy non-transactional accesses, as can arise in STM implementations of SI. We introduce robust snapshot isolation (RSI), an adaptation of SI with similar semantics and guarantees in this mixed setting. We present a declarative specification of RSI as an acyclicity axiom and analogously develop two operational models as lock-based reference implementations (one eager, one lazy). We show that these operational models are both sound and complete against the declarative RSI model

    Characterization of the stimulation output of four devices for focal muscle vibration

    Get PDF
    Different devices for mechano-acoustic muscle vibration became available on the market in the last ten years. Although the use of these vibrators is increasing in research and clinical settings, the features of their stimulation output were never described in literature. In this study we aimed to quantify and compare the stimulation output of the four most widespread pneumatic devices for focal muscle vibration available on the market. A piezoelectric pressure sensor was used to measure the pressure profile generated by the four selected devices in the following experimental conditions: i) measurement of the output changes associated with variations of the stimulation amplitude for three stimulation frequencies (100 Hz, 200 Hz, and 300 Hz); ii) measurement of the output changes during a 20-min long stimulation at constant frequency (300 Hz) and amplitude; iii) measurement of the output changes associated with the progressive activation of all stimulation channels at constant frequency (200 Hz) for different amplitudes. The maximum peak-to-peak amplitudes of the pressure waves were in the range 102 mbar - 369 mbar (below the maximum values declared by the different manufacturers). The shape of the pressure waves generated by the four devices was quasi-sinusoidal and asymmetric with respect to the atmospheric pressure. All output features had a remarkable intra- and inter-device variability. Further studies are required to support the technological improvement of the currently available devices and to focus the issues of vibration effectiveness, limitations, proper protocols, modalities of its application and assessment in neuromuscular training and rehabilitation

    Design of a Programmable and Modular Neuromuscular Electrical Stimulator Integrated into a Wireless Body Sensor Network

    Get PDF
    Neuromuscular electrical stimulation finds application in several fields, from basic neurophysiology, to motor rehabilitation and cardiovascular conditioning. Despite the progressively increasing interest in this technique, its State-of-the-Art technology is mainly based on monolithic, mostly wired devices, leading to two main issues. First, these devices are often bulky, limiting their usability in applied contexts. Second, the possibility of interfacing these stimulation devices with external systems for the acquisition of electrophysiological and biomechanical variables to control the stimulation output is often limited. The aim of this work is to describe the design and development of an innovative electrical stimulator, specifically developed to contend with these issues. The developed device is composed of wireless modules that can be programmed and easily interfaced with third-party instrumentation. Moreover, benefiting from the system modular architecture, stimulation may be delivered concurrently to different sites while greatly reducing cable encumbrance. The main design choices and experimental tests are documented, evidencing the practical potential of the device in use-case scenarios

    Understanding regional activation of thoraco-lumbar muscles in chronic low back pain and its relationship to clinically relevant domains

    Get PDF
    Background: Altered regional activation of the lumbar extensors has been previously observed in individuals with low back pain (LBP) performing high-effort and fatiguing tasks. It is currently unknown whether similar alterations can be observed during low-effort functional tasks. Similarly, previous studies did not investigate whether side differences in regional activation are present in individuals with LBP. Finally, there is limited evidence of whether the extent of the alteration of regional activation is associated with clinical factors. Therefore, the aim of this study was to investigate whether individuals with LBP exhibit asymmetric regional activation of the thoraco-lumbar extensor muscles during functional tasks, and if the extent of neuromuscular control alteration is associated with clinical and psychosocial outcome domains. Methods: 21 participants with and 21 without LBP performed five functional tasks (gait, sit-to-stand, forward trunk flexion, shoulder flexion and anterior pelvic tilt). The spatial distribution of activation of the thoraco-lumbar extensor muscles was assessed bilaterally using high-density electromyography. For each side, the distribution of electromyographic (EMG) amplitude was characterized in terms of intensity, location and size. Indices of asymmetry were calculated from these features and comparisons between groups and tasks were performed using ANOVA. The features that significantly differed between groups were correlated with self-reported measures of pain intensity and other outcome domains. Results: Indices of asymmetry did not differ between participants with and without LBP (p > 0.11). The cranio-caudal location of the activation differed between tasks (p < 0.05), but not between groups (p = 0.64). Participants with LBP showed reduced EMG amplitude during anterior pelvic tilt and loading response phase during gait (both p < 0.05). Pearson correlation revealed that greater pain intensity was associated with lower EMG amplitude for both tasks (R<-0.5, p < 0.05). Conclusions: Despite clear differences between tasks, individuals with and without LBP exhibited similar distributions of EMG amplitude during low-effort functional activities, both within and between sides. However, individuals with LBP demonstrated lower activation of the thoraco-lumbar muscles during gait and anterior pelvic tilt, especially those reporting higher pain intensity. These results have implications in the development or refinement of assessment and intervention strategies focusing on motor control in patients with chronic LBP

    Electrodes' Configuration Influences the Agreement between Surface EMG and B-Mode Ultrasound Detection of Motor Unit Fasciculation

    Get PDF
    Muscle fasciculations, resulting from the spontaneous activation of motor neurons, may be associated with neurological disorders, and are often assessed with intramuscular electromyography (EMG). Recently, however, both ultrasound (US) imaging and multichannel surface EMG have been shown to be more sensitive to fasciculations. In this study we combined these two techniques to compare their detection sensitivity to fasciculations occurring in different muscle regions and to investigate the effect of EMG electrodes' configuration on their agreement. Monopolar surface EMGs were collected from medial gastrocnemius and soleus with an array of 32 electrodes (10 mm Inter-Electrode Distance, IED) simultaneously with b-mode US images detected alongside either proximal, central or distal electrodes groups. Fasciculation potentials (FP) were identified from single differential EMGs with 10 mm (SD1), 20 mm (SD2) and 30 mm (SD3) IEDs, and fasciculation events (FE) from US image sequences. The number, location, and size of FEs and FPs in 10 healthy participants were analyzed. Overall, the two techniques showed similar sensitivities to muscle fasciculations. US was equally sensitive to FE occurring in the proximal and distal calf regions, while the number of FP revealed by EMG increased significantly with the IED and was larger distally, where the depth of FE decreased. The agreement between the two techniques was relatively low, with a percentage of fasciculation classified as common ranging from 22% for the smallest IED to 68% for the largest IED. The relevant number of events uniquely detected by the two techniques is discussed in terms of different spatial sensitivities of EMG and US, which suggest that a combination of US-EMG is likely to maximise the sensitivity to muscle fasciculations
    • …
    corecore