Pteridines Vol. 3, pp. 23-24

Short Communication

Non-responsive Dihydropteridine Reductase Deficiency

R. Cerone, A. R. Fantasia, M. C. Schiaffino, L. Maritano and C. Romano

Clinica Pediatrica dell'Università, Ist. G. Gaslini, Genova, Italy

(Received March 1992)

Introduction

The BH₄ loading test is commonly used for the differential diagnosis of BH₄ defects.

The oral loading test was introduced by Niederwieser *et al.* (1) in 1979: oral administration of 7.5 mg BH₄ per kg is followed by a decrease of Phe levels within 4 to 6 hours, in patients with atypical PKU.

Although the BH_4 loading test is completely reliable in detecting BH_4 synthesis defects, it misses diagnosis of dihydropteridine reductase (DHPR) deficiency in some cases (2).

In the 1987 Ponzone *et al.* (3) reported that on administration of 7.5 mg/kg oral dose of BH_4 two patients showed no response but did show a decreased serum Phe levels after the administration of 20 mg/kg BH_4 .

For this reason one DHPR-deficient patient known to be a non-responder to the dose of 7.5 mg BH_4 per kg was rc-tcstcd at 20 mg/kg.

Case Report

The clinical development and therapeutic aspects have been described previously (4, 5).

The patient was the third child of healthy non-related parents. One brother died in the first month of life with neurological symptoms.

Pregnancy and delivery were normal. Birth weight was 4500 g. The neonatal period was uneventful.

A delay in motor development was realized in the second half of the 1st year: the parents referred episodes of eye rolling from the age of 4 months.

Pteridines / Vol. 3 / No. 1/2 Copyright © 1992 Walter de Gruyter · Berlin · New York The patient was first seen at our Department at the age of 20 months.

Neurological examination revealed hypotonia and severe psychomotory retardation (I. $Q_{.} = 48$).

Biochemical findings are given in Table 1:

- Hyperphenylalaninemia with urinary excretion of phenylalanine metabolites;
- high urinary excretion of pterins;
- low levels of homovanillic acid (HVA) and 5hydroxy-indole acetic acid (5HIAA) in CSF.

DHPR activity was absent in dried blood spots.

Phe plasma levels do not decrease after BH_4 loading at dose of 7.5 mg/kg. The child was re-tested at 20 mg/kg of BH_4 .

Table 1. Biochemical	findings in	n patient	S. F	ŝ
----------------------	-------------	-----------	------	---

	Patients	Controls	
Plasma Phe	845	42-74	µmol/l
Urine Neopterin*	2.15	0.51	mmol/mmol Cr
Urine Biopterin*	10.7	1.5	mmol/mmol Cr
CSF HVA	117	250 - 880	nmol/l
CSF 5HIAA	12.1	110 - 360	nmol/l
CSF Neopterin	9.11	0 - 20	nmol/l
CSF Biopterin	42	10- 34	nmol/l

* Urinary pterins are measured after BH₄ load.

Material and Methods

Plasma aminoacids were determined by ion-exhange chromatography; a BH_4 loading test was performed by oral administration of 7.5 mg/kg of body weight

after overnight fasting, measuring plasma Phe and Tyr at zero, 4th and 8th hr; urinary pterins, CSF HVA and 5HIAA were analyzed by HPLC; DHPR activity in liver biopsy and in dried blood spot was measured according to Arai *et al.* (3).

Results and Discussion

In Table 2 are reported the Phe levels before and after load with the differential dose of BH₄.

At 20 mg/kg Phe levels decreased from 1241 μ mol/l to 440 μ mol/l 8 hours later.

On the basis of our results we think that the dose of 20 mg/kg BH₄ represents the accurate basis to discriminate the responsiveness or non-responsiveness of the BH₄ load, as emphasized by Ponzone *et al.* (3).

Of course to define diagnosis pterins or enzyme assay are essential.

Table 2. Phenylalanine levels after loading with different doses of BH_4

	Phe levels (µmol/l)		
	0	+4 h	+8 h
BH ₄ (mg/kg) 7.5	671	660	630
BH4 (mg/kg) 20	1241	775	440

References

- Niederwieser, A., Curtius, H. Ch., Viscontini, M., Schaub, J. & Schmidt, H. (1979) Lancet 1, 550.
- Niederwieser, A., Ponzone, A., Curtius, C. H. (1985) J. Inher. Metab. Dis. 8 (suppl. 1) 34-38.
- Ponzone, A., Guardamagna, O., Ferraris, S., Bracco, G. & Cotton, R. G. H. (1987) Lancet 1, 512-513.
- Cerone, R., Scalisi, S., Cotellessa, M., Schiaffino, M: C., Caruso, U. & Romano, C. (1986) J. Inher. Metab. Dis. 9 (suppl. 2), 244-246.
- 5. Cerone, R., Schiaffino, M. C., Caruso, U., Maritano, L., Blau, N. & Romano, C. (1991) in: Pterins and Biogenic Amines in Neurology, Pediatrics and Immunology (Blau, N., Curtius, C. H., Levine, R. A. & Cotton, R. G. H., eds.) pp. 179-181, Lakeshore Publishing Company, Grosse Pointe.