188 research outputs found
Infrared anomalous Hall effect in SrRuO: Evidence for crossover to intrinsic behavior
The origin of the Hall effect in many itinerant ferromagnets is still not
resolved, with an anomalous contribution from the sample magnetization that can
exhibit extrinsic or intrinsic behavior. We report the first mid-infared (MIR)
measurements of the complex Hall (), Faraday (), and Kerr
() angles, as well as the Hall conductivity () in a
SrRuO film in the 115-1400 meV energy range. The magnetic field,
temperature, and frequency dependence of the Hall effect is explored. The MIR
magneto-optical response shows very strong frequency dependence, including sign
changes. Below 200 meV, the MIR changes sign between 120 and 150
K, as is observed in dc Hall measurements. Above 200 meV, the temperature
dependence of is similar to that of the dc magnetization and the
measurements are in good agreement with predictions from a band calculation for
the intrinsic anomalous Hall effect (AHE). The temperature and frequency
dependence of the measured Hall effect suggests that whereas the behavior above
200 meV is consistent with an intrinsic AHE, the extrinsic AHE plays an
important role in the lower energy response.Comment: The resolution of figures is improve
Electronic structure of ferromagnetic semiconductor Ga1-xMnxAs probed by sub-gap magneto-optical spectroscopy
We employ Faraday and Kerr effect spectroscopy in the infrared range to
investigate the electronic structure of Ga1-xMnxAs near the Fermi energy. The
band structure of this archetypical dilute-moment ferromagnetic semiconductor
has been a matter of controversy, fueled partly by previous measurements of the
unpolarized infrared absorption and their phenomenological impurity-band
interpretation. The infrared magneto-optical effects we study arise directly
from the spin-splitting of the carrier bands and their chiral asymmetry due to
spin-orbit coupling. Unlike the unpolarized absorption, they are intimately
related to ferromagnetism and their interpretation is much more microscopically
constrained in terms of the orbital character of the relevant band states. We
show that the conventional theory of the disordered valence band with dominant
As p-orbital character and coupled by kinetic-exchange to Mn local moments
accounts semi-quantitatively for the overall characteristics of the measured
infrared magneto-optical spectra.Comment: 4 pages 3 figure
Catechol estrogens stimulate insulin secretion in pancreatic β-cells via activation of the transient receptor potential A1 (TRPA1) channel
Estrogen hormones play an important role in controlling glucose homeostasis and pancreatic β-cell function. Despite the significance of estrogen hormones for regulation of glucose metabolism, little is known about the roles of endogenous estrogen metabolites in modulating pancreatic β-cell function. In this study, we evaluated the effects of major natural estrogen metabolites, catechol estrogens, on insulin secretion in pancreatic β-cells. We show that catechol estrogens, hydroxylated at positions C2 and C4 of the steroid A ring, rapidly potentiated glucose-induced insulin secretion via a nongenomic mechanism. 2-Hydroxyestrone, the most abundant endogenous estrogen metabolite, was more efficacious in stimulating insulin secretion than any other tested catechol estrogens. In insulin-secreting cells, catechol estrogens produced rapid activation of calcium influx and elevation in cytosolic free calcium. Catechol estrogens also generated sustained elevations in cytosolic free calcium and evoked inward ion current in HEK293 cells expressing the transient receptor potential A1 (TRPA1) cation channel. Calcium influx and insulin secretion stimulated by estrogen metabolites were dependent on the TRPA1 activity and inhibited with the channel-specific pharmacological antagonists or the siRNA. Our results suggest the role of estrogen metabolism in a direct regulation of TRPA1 activity with potential implications for metabolic diseases
Review of the ELI-NP-GBS low level rf and synchronization systems
The Gamma Beam System (GBS) of ELI-NP is a linac based gamma-source in construction at Magurele (RO) by the European consortium EuroGammaS led by INFN. Photons with tunable energy and with intensity and brilliance well beyond the state of the art will be produced by Compton back-scattering between a high quality electron beam (up to 740 MeV) and a 515 nm intense laser pulse. Production of very intense photon flux with narrow bandwidth requires multi-bunch operation at 100 Hz repetition rate. A total of 13 klystrons, 3 S-band (2856 MHz) and 10 C-band (5712 MHz) will power a total of 14 Travelling Wave accelerating sections (2 S-band and 12 C-band) plus 3 S-band Standing Wave cavities (a 1.6 cell RF gun and 2 RF deflectors). Each klystron is individually driven by a temperature stabilized LLRF module, for a maximum flexibility in terms of accelerating gradient, arbitrary pulse shaping (e.g. to compensate beam loading effects in multi-bunch regime) and compensation of long-term thermal drifts. In this paper, the whole LLRF system architecture and bench test results, the RF reference generation and distribution together with an overview of the synchronization system will be described
Recommended from our members
Just how multi-level is leadership research? A document co-citation analysis 1980–2013 on leadership constructs and outcomes
The use of multi-level theories and methodologies in leadership has gained momentum in recent years. However, the leadership field still suffers from a fragmented and unclear evolution and practice of multi-level approaches. The questions of how and to what extent multi-level research has evolved in both leadership phenomena and leadership outcomes, and which informal research networks drove this evolution, remain vastly unexplored. In this study, the extent of literature published between 1980 and 2013 is analyzed using a document co-citation analysis and invisible colleges’ framework. This allows us to map the evolution of the multi-level intellectual structure of the leadership field. Specifically, we identify a number of distinct colleges –their conceptualization of leadership and outcomes – and trace their evolution paths over thirty years. We find a considerable fragmentation of the field, with the usage of multi-level leadership conceptualization mostly embraced by more peripheral clusters. Finally we discuss implications for further research with regard to a set of distinct trajectories for the future evolution of multi-level approaches in the leadership domain
Optical Conductivity and Hall Coefficient in High-Tc Superconductors: Significant Role of Current Vertex Corrections
We study AC conductivities in high-Tc cuprates, which offer us significant
information to reveal the true electronic ground states. Based on the
fluctuation-exchange (FLEX) approximation, current vertex corrections (CVC's)
are correctly taken into account to satisfy the conservation laws. We find the
significant role of the CVC's on the optical Hall conductivity in the presence
of strong antiferromagnetic (AF) fluctuations. This fact leads to the failure
of the relaxation time approximation (RTA). As a result, experimental highly
unusual behaviors, (i) prominent frequency and temperature dependences of the
optical Hall coefficient, and (ii) simple Drude form of the optical Hall andge
for wide range of frequencies, are satisfactorily reproduced. In conclusion,
both DC and AC transport phenomena in (slightly under-doped) high-Tc cuprates
can be explained comprehensively in terms of nearly AF Fermi liquid, if one
take the CVC's into account.Comment: 5 page
Atomistic defect states as quantum emitters in monolayer MoS
Quantum light sources in solid-state systems are of major interest as a basic
ingredient for integrated quantum device technologies. The ability to tailor
quantum emission through deterministic defect engineering is of growing
importance for realizing scalable quantum architectures. However, a major
difficulty is that defects need to be positioned site-selectively within the
solid. Here, we overcome this challenge by controllably irradiating
single-layer MoS using a sub-nm focused helium ion beam to
deterministically create defects. Subsequent encapsulation of the ion bombarded
MoS flake with high-quality hBN reveals spectrally narrow emission lines
that produce photons at optical wavelengths in an energy window of one to two
hundred meV below the neutral 2D exciton of MoS. Based on ab-initio
calculations we interpret these emission lines as stemming from the
recombination of highly localized electron-hole complexes at defect states
generated by the helium ion bombardment. Our approach to deterministically
write optically active defect states in a single transition metal
dichalcogenide layer provides a platform for realizing exotic many-body
systems, including coupled single-photon sources and exotic Hubbard systems.Comment: Main: 9 pages, 3 figures + SI: 19 pages, 10 figure
- …