60 research outputs found

    Elevated Incidence of Dental Caries in a Mouse Model of Cystic Fibrosis

    Get PDF
    Saliva bicarbonate constitutes the main buffering system which neutralizes the pH fall generated by the plaque bacteria during sugar metabolism. We found that the saliva pH is severely decreased in a mouse model of cystic fibrosis disease (CF). Given the close relationship between pH and caries development, we hypothesized that caries incidence might be elevated in the mouse CF model.). are enhanced at low pH values, we speculate that the decrease in the bicarbonate content and pH buffering of the saliva is at least partially responsible for the increased severity of lesions observed in the CF mouse

    Lexicology and Corpus Linguistics

    No full text

    Structure of the effector binding domain of the arabinose repressor AraR from Bacillus subtilis

    No full text
    In Bacillus subtilis, the arabinose repressor AraR negatively controls the expression of genes in the metabolic pathway of arabinose-containing polysaccharides. The protein is composed of two domains of different phylogenetic origin and function: an N-terminal DNA-binding domain belonging to the GntR family and a C-terminal effector-binding domain that shows similarity to members of the GalR/LacI family. The crystal structure of the C-terminal effector-binding domain of AraR in complex with the effector l-arabinose has been determined at 2.2 Å resolution. The l-arabinose binding affinity was characterized by isothermal titration calorimetry and differential scanning fluorimetry; the K (d) value was 8.4 ± 0.4 µM. The effect of l-arabinose on the protein oligomeric state was investigated in solution and detailed analysis of the crystal identified a dimer organization which is distinctive from that of other members of the GalR/LacI family

    Impairing MLL-fusion gene-mediated transformation by dissecting critical interactions with the lens epithelium-derived growth factor (LEDGF/p75)

    No full text
    The lens epithelium-derived growth factor (LEDGF/p75) tethers the mixed-lineage leukemia (MLL1) protein complex to chromatin. Likewise, LEDGF/p75 tethers the HIV-1 pre-integration complex to chromatin. We previously demonstrated that expression of the C-terminal fragment fused to enhanced green fluorescent protein (eGFP) (eGFP-LEDGF(325-530)) impaired HIV-1 replication. Here, we explored this strategy to selectively interfere with the leukemogenic activity of MLL-fusion proteins. We found that expression of LEDGF(325-530) impaired the clonogenic growth of MLL-fusion gene transformed human and mouse hematopoietic cells, without affecting the growth of control cells immortalized by the FLT3-ITD mutant or normal lineage-marker-depleted murine bone marrow cells. Expression of LEDGF(325-530) was associated with downregulation of the MLL target Hoxa9 and impaired cell cycle progression. Structure-function analysis revealed two small eGFP-fused LEDGF/p75 peptides, LEDGF(424-435) and LEDGF(375-386) phenocopying these effects. Both LEDGF(325-530) and the smaller active peptides were able to disrupt the LEDGF/p75-MLL interaction. Expression of LEDGF(325-530) or LEDGF(375-386) fragments increased the latency period to disease development in vivo in a mouse bone marrow transplant model of MLL-AF9-induced AML. We conclude that small peptides disrupting the LEDGF/p75-MLL interface have selective anti-leukemic activity providing a direct rationale for the design of small molecule inhibitors targeting this interaction.status: publishe
    • …
    corecore