37 research outputs found

    Large Deformation Diffeomorphic Metric Mapping Registration of Reconstructed 3D Histological Section Images and in vivo MR Images

    Get PDF
    Our current understanding of neuroanatomical abnormalities in neuropsychiatric diseases is based largely on magnetic resonance imaging (MRI) and post mortem histological analyses of the brain. Further advances in elucidating altered brain structure in these human conditions might emerge from combining MRI and histological methods. We propose a multistage method for registering 3D volumes reconstructed from histological sections to corresponding in vivo MRI volumes from the same subjects: (1) manual segmentation of white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) compartments in histological sections, (2) alignment of consecutive histological sections using 2D rigid transformation to construct a 3D histological image volume from the aligned sections, (3) registration of reconstructed 3D histological volumes to the corresponding 3D MRI volumes using 3D affine transformation, (4) intensity normalization of images via histogram matching, and (5) registration of the volumes via intensity based large deformation diffeomorphic metric (LDDMM) image matching algorithm. Here we demonstrate the utility of our method in the transfer of cytoarchitectonic information from histological sections to identify regions of interest in MRI scans of nine adult macaque brains for morphometric analyses. LDDMM improved the accuracy of the registration via decreased distances between GM/CSF surfaces after LDDMM (0.39 ± 0.13 mm) compared to distances after affine registration (0.76 ± 0.41 mm). Similarly, WM/GM distances decreased to 0.28 ± 0.16 mm after LDDMM compared to 0.54 ± 0.39 mm after affine registration. The multistage registration method may find broad application for mapping histologically based information, for example, receptor distributions, gene expression, onto MRI volumes

    Patient Specific Dosimetry Phantoms Using Multichannel LDDMM of the Whole Body

    Get PDF
    This paper describes an automated procedure for creating detailed patient-specific pediatric dosimetry phantoms from a small set of segmented organs in a child's CT scan. The algorithm involves full body mappings from adult template to pediatric images using multichannel large deformation diffeomorphic metric mapping (MC-LDDMM). The parallel implementation and performance of MC-LDDMM for this application is studied here for a sample of 4 pediatric patients, and from 1 to 24 processors. 93.84% of computation time is parallelized, and the efficiency of parallelization remains high until more than 8 processors are used. The performance of the algorithm was validated on a set of 24 male and 18 female pediatric patients. It was found to be accurate typically to within 1-2 voxels (2–4 mm) and robust across this large and variable data set

    Test-retest reproducibility of a multi-atlas automated segmentation tool on multimodality brain MRI

    Get PDF
    The increasing use of large sample sizes for population and personalized medicine requires high-throughput tools for imaging processing that can handle large amounts of data with diverse image modalities, perform a biologically meaningful information reduction, and result in comprehensive quantification. Exploring the reproducibility of these tools reveals the specific strengths and weaknesses that heavily influence the interpretation of results, contributing to transparence in science. We tested-retested the reproducibility of MRICloud, a free automated method for whole-brain, multimodal MRI segmentation and quantification, on two public, independent datasets of healthy adults. Results The reproducibility was extremely high for T1-volumetric analysis, high for diffusion tensor images (DTI) (however, regionally variable), and low for resting-state fMRI. Conclusion In general, the reproducibility of the different modalities was slightly superior to that of widely used software. This analysis serves as a normative reference for planning samples and for the interpretation of structure-based MRI studies.910FAPESP – Fundação de Amparo à Pesquisa Do Estado De São Paulo2107/13102-7; 2013/07559-

    Direct estimation of patient attributes from anatomical MRI based on multi-atlas voting

    Get PDF
    MRI brain atlases are widely used for automated image segmentation, and in particular, recent developments in multi-atlas techniques have shown highly accurate segmentation results. In this study, we extended the role of the atlas library from mere anatomical reference to a comprehensive knowledge database with various patient attributes, such as demographic, functional, and diagnostic information. In addition to using the selected (heavily-weighted) atlases to achieve high segmentation accuracy, we tested whether the non-anatomical attributes of the selected atlases could be used to estimate patient attributes. This can be considered a context-based image retrieval (CBIR) approach, embedded in the multi-atlas framework. We first developed an image similarity measurement to weigh the atlases on a structure-by-structure basis, and then, the attributes of the multiple atlases were weighted to estimate the patient attributes. We tested this concept first by estimating age in a normal population; we then performed functional and diagnostic estimations in Alzheimer's disease patients. The accuracy of the estimated patient attributes was measured against the actual clinical data, and the performance was compared to conventional volumetric analysis. The proposed CBIR framework by multi-atlas voting would be the first step toward a knowledge-based support system for quantitative radiological image reading and diagnosis

    Atlas pre-selection strategies to enhance the efficiency and accuracy of multi-atlas brain segmentation tools

    No full text
    <div><p>Multi-atlas brain segmentation of human brain MR images allows quantification research in structural neuroimaging. To achieve high accuracy and computational efficiency of segmentation relies on a custom subset of atlases for each target subject. However, the criterion for atlas pre-selection remains an open question. In this study, two atlas pre-selection approaches based on location-based feature matching were proposed and compared to random and mutual information-based methods using a database of 47 atlases. A varying number of atlases ranked top with hierarchical structural granularity were compared using Dice overlap. The results indicated that the proposed 4L approach consistently led to the highest level of accuracy at a given number of employed atlases in both adult and geriatric populations. In addition, the proposed two methods (4L and LV) can reduce 20 times computational time compared with the stereotypical mutual information-based method. Our pre-selection strategy would provide better segmentation performance in terms of both accuracy and efficiency. The proposed atlas pre-selection will be further implemented into our online automatic brain image segmentation system (<a href="http://www.mricloud.org/" target="_blank">www.mricloud.org</a>).</p></div

    The coarse 7-label segmentation for a single subject.

    No full text
    <p>The 7 labels include the CSF space with red boundary, the gray matter with blue boundary, the white matter with yellow boundary, the ventricles with pink boundary, tissues in the skull base (optic chiasm, optic nerves, pituitary gland, and other tissues which have similar intensities as the adjacent brain tissues) with cyan boundary, skin (includes lipid layer) with green boundary, and the remaining space with orange boundary.</p

    Examples of 5 selected atlases for a geriatric subject with different atlas pre-selection approaches.

    No full text
    <p>The same atlases shared across different pre-selection approaches are indicated with the same border color.</p
    corecore