18 research outputs found

    Aplicación catalítica de nuevos nanosistemas obtenidos a partir de la aproximación organometálica

    Full text link
    [ES] La presente tesis doctoral se desarrolla en el ámbito de la catálisis, la cual está enmarcada dentro del concepto de Química Sostenible. En concreto, la investigación se ha centrado en el desarrollo y aplicación de nuevos catalizadores basados en nanopartículas metálicas coloidales y soportadas para llevar a cabo reacciones de interés. Todas las MNPs sintetizadas en esta tesis doctoral se llevaron a cabo a partir de la aproximación organometálica, donde generalmente se descompone un precursor organometálico bajo condiciones suaves de reacción y en presencia de un agente estabilizador (molécula orgánica o soporte). En el Capítulo 4 de la tesis, se ha descrito el primer ejemplo de estabilización de Ru NPs con una nueva familia de ligandos policíclicos aromáticos no planos, denominados nanografenos (hept-HBC). Específicamente, se han utilizado dos tipos distintos de nanografeno distorsionado: i) uno funcionalizado con un grupo carbonilo, y ii) otro funcionalizado con una grupo metileno en la misma posición (Ru@1 y Ru@2, respectivamente). Gracias a la similitud con los sistemas basados en MNPs soportadas en grafeno o derivados, este material puede utilizarse como referencia para estudiar los modos de coordinación y las dinámicas de estos con la superficie de la nanopartícula. A partir de un estudio combinado teórico/experimental se ha demostrado que la curvatura de los nanografenos hept-HBC es crucial para la estabilización de las Ru NPs. Por último, se ha evaluado la actividad catalítica de estas Ru NPs en la hidrogenación de multitud de sustratos aromáticos, observándose diferencias significativas en función del ligando estabilizador utilizado. En el Capítulo 5 se ha investigado la formación de MNPs a través de la aproximación organometálica utilizando el óxido de grafeno reducido dopado con átomos de nitrógeno (NH2-rGO) como soporte. En la primera parte del capítulo, sintetizamos Ru NPs soportadas sobre NH2-rGO (Ru@NH2-rGO) y rGO (Ru@rGO), con la intención de investigar el rol de los átomos de N en la estabilización de las MNPs, así como en su actividad catalítica. Para ello, se estudió la hidrogenación del ácido palmítico a 1-hexadecanol, siendo el Ru@NH2-rGO el catalizador heterogéneo monometálico de Ru más activo y selectivo reportado hasta la fecha (99% conversión y 93 % selectivo). En la segunda parte del capítulo, generamos PtRu NPs con distintas composiciones atómicas (5:1, 1:1 y 1:5) sobre NH2-rGO, siguiendo la aproximación organometálica. La misma velocidad de descomposición de los precursores Pt(NBE)3 y Ru(COD)(COT) nos permitió generar las NPs de tipo aleación. Estos sistemas bimetálicos (PtxRuy@NH2-rGO) se estudiaron en la hidrogenación de multitud de compuestos con grupos polares (C=O), observándose diferencias significativas en función del soporte utilizado y la composición atómica de las MNPs. Por último, en el Capítulo 6 se investigó el uso de nanopartículas magnéticas (MagNPs) para emitir calor por pérdidas de histéresis en presencia de un campo magnético oscilante de alta frecuencia. En primer lugar, se generaron nuevos agentes calefactores basados en MagNPs bimetálicas de tipo "core-shell" de CoNi encapsuladas en carbono (Co@Ni@C), con el objetivo de hidrogenar selectivamente el CO2 a CO (RWGS) obteniéndose excelentes resultados catalíticos. Por último, también presentamos la síntesis de una nueva MagNP de tipo "core-shell" (FeCo@Ni) para su aplicación en catálisis inducida magnéticamente en disolución, siendo capaz de modular su selectividad al producto de la hidrogenación o de la hidrodesoxigenación del HMF en función del campo magnético aplicado. Además, después de su encapsulación en carbono (FeCo@Ni@C) han demostrado ser activas, selectivas y estables en la reducción de multitud de sustratos oxigenados derivados de la biomasa en medio acuoso, siendo el primer ejemplo reportado hasta la fecha de catálisis magnética realizada en agua.[CAT] La present Tesi Doctoral es desenvolupa en l'àmbit de la catàlisi, la qual està emmarcada dins del concepte de Química Sostenible. Concretament, la investigació s'ha centrat en el desenvolupament i aplicació de nous catalitzadors basats en nanopartícules metàl·liques col·loïdals i suportades per dur a terme reaccions d'interès. Totes les MNPs sintetitzades en aquesta tesi doctoral es van dur a terme a partir de l'aproximació organometàl·lica, on generalment es descompon un precursor organometàl·lic sota condicions suaus de reacció i en presència d'un agent estabilitzador (molècula orgànica o suport). En el Capítol 4 de la Tesi, s'ha descrit el primer exemple d'estabilització de Ru NPs amb una nova família de lligands policíclics aromàtics no plans, denominats nanografens (hept-HBC). Específicament, s'han utilitzat dos tipus diferents de nanografen distorsionat: i) un funcionalitzat amb un grup carbonil, i un altre ii) funcionalitzat amb un grup metilè en la mateixa posició (Ru@1 i Ru@2, respectivament). Gràcies a la similitud amb els sistemes basats en MNPs suportades en grafè o derivats, aquest material pot utilitzar-se com a referència per a estudiar els modes de coordinació i dinàmiques d'aquests amb la superfície de la nanopartícula. A partir d'un estudi combinat teòric/experimental s'ha demostrat que la curvatura dels nanografens hept-HBC és crucial per a l'estabilització de les Ru NPs. Finalment, s'ha avaluat l'activitat catalítica d'aquestes Ru NPs en la hidrogenació de multitud de substrats aromàtics, observant diferències significatives en funció del lligand estabilitzador utilitzat. En el Capítol 5 s'ha investigat la formació de MNPs a través de l'aproximació organometàl·lica utilitzant l'òxid de grafè reduït dopat amb àtoms de nitrogen (NH2-rGO) com a suport. En la primera part del capítol, vam sintetitzar Ru NPs suportades sobre NH2-rGO (Ru@NH2-rGO) i rGO (Ru@rGO), amb l'intenció d'investigar el paper dels àtoms de N en l'estabilització de les MNPs, així com en la seua activitat catalítica. Per a això, es va estudiar la hidrogenació de l'àcid palmític a 1-hexadecanol, sent el Ru@NH2-rGO el catalitzador heterogeni monometàl·lic de Ru més actiu i selectiu reportat fins a la data (99% conversió i 93 % selectiu). En la segona part del capítol, es van generar PtRu NPs amb diferents composicions atòmiques (5:1, 1:1 i 1:5) sobre NH2-rGO, seguint l'aproximació organometàl·lica. La mateixa velocitat de descomposició dels precursores Pt(NBE)3 i Ru(COD)(COT) ens va permetre generar les NPs de tipus aliatge. Aquests sistemes bimetàl·lics (PtxRuy@NH2-rGO) es van estudiar en la hidrogenació de multitud de compostos amb grups polars (C=O), observant-se diferències significatives en funció del suport utilitzat i la composició atòmica de les MNPs. Finalment, en el Capítol 6 es va investigar l'ús de nanopartícules magnètiques (MagNPs) per emetre calor per pèrdues d'histèresi en presència d'un camp magnètic oscil·lant d'alta freqüència. En primer lloc, es van generar nous agents calefactores basats en generar MagNPs bimetàl·liques de tipus "core-shell" de CoNi encapsulades en carbó (Co@Ni@C), amb l'objectiu d'hidrogenar selectivament el CO2 a CO (RWGS) obtenint excel·lents resultats catalítics. Finalment, també presentem la síntesi d'una nova MagNP de tipus "core-shell" (FeCo@Ni) per a la seva aplicació en catàlisi induïda magnèticament en solució, demostrant ser capaç de modular la seva selectivitat al producte de l'hidrogenació o de l'hidrodesoxigenació del HMF en funció del camp magnètic aplicat. A més, després de la seva encapsulació en carbó (FeCo@Ni@C) han demostrat ser actives, selectives i estables en la reducció de multitud de substrats oxigenats derivats de la biomassa en medi aquós, sent el primer exemple reportat fins a la data de catàlisi magnètica realitzada en aigua.[EN] This Doctoral Thesis is developed in the field of catalysis, which is framed within the concept of Sustainable Chemistry. Specifically, the research has focused on the development and application of new catalysts based on colloidal and supported metallic nanoparticles to carry out relevant catalytic reactions. All the MNPs synthesized in this doctoral thesis were carried out from the organometallic approach, where an organometallic precursor is generally decomposed under mild conditions, room temperature and 3 bar H2, in the presence of a stabilizing agent (organic molecule, polymer, or support). The catalytic properties of MNPs are greatly influenced by the stabilizing agents used, which are capable of modifying their electronic and steric properties. Therefore, the search for new ligands capable of modulating these properties is of great scientific interest. In Chapter 4 of the Thesis, we describe the first example of Ru NPs stabilized with a new family of non-planar polycyclic aromatic ligands, called nanographenes (hept-HBC). Specifically, two different types of distorted nanographene have been used: i) one functionalized with a carbonyl group, and another ii) functionalized with a methylene group in the same position (Ru@1 and Ru@2, respectively). Thanks to the resemblance with systems based on supported-MNPs on graphene or derivatives, this material can be used as a reference to study the coordination modes and dynamics of these with the surface of the nanoparticle. A combined theoretical/experimental study revealed that the curvature of hept-HBC nanographenes is crucial for the stabilization of Ru NPs. Finally, the catalytic activity of these Ru NPs has been evaluated in the hydrogenation of multitude of arenes, observing significant differences depending on the stabilizing ligand used. In Chapter 5, the formation of MNPs through the organometallic approach was investigated using reduced graphene oxide N-doped (NH2-rGO) as support. In the first part of the chapter, Ru NPs supported on NH2-rGO (Ru@NH2-rGO) and rGO (Ru@rGO) were synthesized, with the aim of investigating the role of N atoms in the stabilization of the MNPs, as well as their catalytic activity. For this purpose, the hydrogenation of palmitic acid to 1-hexadecanol was studied, and Ru@NH2-rGO was found to be the most active and selective monometallic Ru-based heterogeneous catalyst reported to date (99% conversion and 93% selectivity). In the second part of the chapter, PtRu NPs with different atomic compositions (5:1, 1:1, and 1:5) were generated on NH2-rGO using the organometallic approach. The same decomposition rate of Pt(NBE)3 and Ru(COD)(COT) precursors allowed us to generate alloy-type NPs. These bimetallic systems (PtxRuy@NH2-rGO) were studied in the hydrogenation of a variety of compounds with polar groups (C=O), and significant differences were observed depending on the support used and the atomic composition of the MNPs. Finally, in Chapter 6 the use of magnetic nanoparticles (MagNPs) for heat generation through hysteresis losses in the presence of a high-frequency oscillating magnetic field was investigated. Firstly, new heat-generating agents based on bimetallic core-shell type CoNi MagNPs encapsulated in carbon (Co@Ni@C) were synthesized with the aim of selectively hydrogenate CO2 to CO (RWGS), obtaining excellent catalytic results. Finally, a new core-shell type MagNP (FeCo@Ni@C), the MagNPs proved to be active, selective, and stable in the reduction of several oxygenated substrates derived from biomass in aqueous media, being the first reported example of magnetic catalysis performed in water to date. In Chapter 6, the crucial role of MagNP encapsulation was demonstrated, where carbon not only limits the total oxidation of MagNPs but also prevents their sintering at high temperatures (~ 700 °C) in gas phase and avoids their aggregation in liquid phase.Cerezo Navarrete, C. (2023). Aplicación catalítica de nuevos nanosistemas obtenidos a partir de la aproximación organometálica [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/19636

    Organometallic Nanoparticles Ligated by NHCs: Synthesis, Surface Chemistry and Ligand Effects

    Get PDF
    [EN] Over the last 20 years, the use of metallic nanoparticles (MNPs) in catalysis has awakened a great interest in the scientific community, mainly due to the many advantages of this kind of nanostructures in catalytic applications. MNPs exhibit the characteristic stability of heterogeneous catalysts, but with a higher active surface area than conventional metallic materials. However, despite their higher activity, MNPs present a wide variety of active sites, which makes it difficult to control their selectivity in catalytic processes. An efficient way to modulate the activity/selectivity of MNPs is the use of coordinating ligands, which transforms the MNP surface, subsequently modifying the nanoparticle catalytic properties. In relation to this, the use of N-heterocyclic carbenes (NHC) as stabilizing ligands has demonstrated to be an effective tool to modify the size, stability, solubility and catalytic reactivity of MNPs. Although NHC-stabilized MNPs can be prepared by different synthetic methods, this review is centered on those prepared by an organometallic approach. Here, an organometallic precursor is decomposed under H-2 in the presence of non-stoichiometric amounts of the corresponding NHC-ligand. The resulting organometallic nanoparticles present a clean surface, which makes them perfect candidates for catalytic applications and surface studies. In short, this revision study emphasizes the great versatility of NHC ligands as MNP stabilizers, as well as their influence on catalysis.This research was funded by: Proyectos Intramurales Especiales (201880E079), Primero Proyectos de Investigacion PAID-06-18 (SP20180088), Agencia Estatal de Investigacion (PID2019-104159GB-I00/AEI/10.13039/501100011033) and Junta de Andalucia (PY18-3208). The authors thank Instituto de Tecnología Química (ITQ), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Departamento de Química Inorgánica (University of Seville), Institute for Chemical Research (IIQ) for the facilities and Severo Ochoa excellence programme, C.C.-N. thanks Generalitat Valenciana for the predoctoral GVA fellowship (ACIF/2019/076). We gratefully acknowledge B. Chaudret for his invaluable contribution to this research area and his sincere friendship.Cerezo-Navarrete, C.; Lara, P.; Martínez-Prieto, LM. (2020). Organometallic Nanoparticles Ligated by NHCs: Synthesis, Surface Chemistry and Ligand Effects. Catalysts. 10(10):1-30. https://doi.org/10.3390/catal10101144S1301010Hopkinson, M. N., Richter, C., Schedler, M., & Glorius, F. (2014). An overview of N-heterocyclic carbenes. Nature, 510(7506), 485-496. doi:10.1038/nature13384Smith, C. A., Narouz, M. R., Lummis, P. A., Singh, I., Nazemi, A., Li, C.-H., & Crudden, C. M. (2019). N-Heterocyclic Carbenes in Materials Chemistry. Chemical Reviews, 119(8), 4986-5056. doi:10.1021/acs.chemrev.8b00514Arduengo, A. J., Harlow, R. L., & Kline, M. (1991). A stable crystalline carbene [Erratum to document cited in CA114(7):62009r]. Journal of the American Chemical Society, 113(7), 2801-2801. doi:10.1021/ja00007a092Bourissou, D., Guerret, O., Gabbaï, F. P., & Bertrand, G. (1999). Stable Carbenes. Chemical Reviews, 100(1), 39-92. doi:10.1021/cr940472uDe Frémont, P., Marion, N., & Nolan, S. P. (2009). Carbenes: Synthesis, properties, and organometallic chemistry. Coordination Chemistry Reviews, 253(7-8), 862-892. doi:10.1016/j.ccr.2008.05.018Herrmann, W. A., Gooβen, L. J., & Spiegler, M. (1997). Functionalized imidazoline-2-ylidene complexes of rhodium and palladium. Journal of Organometallic Chemistry, 547(2), 357-366. doi:10.1016/s0022-328x(97)00434-8Poyatos, M., Mata, J. A., & Peris, E. (2009). Complexes with Poly(N-heterocyclic carbene) Ligands: Structural Features and Catalytic Applications. Chemical Reviews, 109(8), 3677-3707. doi:10.1021/cr800501sSchaper, L.-A., Hock, S. J., Herrmann, W. A., & Kühn, F. E. (2012). Synthesis and Application of Water-Soluble NHC Transition-Metal Complexes. Angewandte Chemie International Edition, 52(1), 270-289. doi:10.1002/anie.201205119Lara, P., Rivada-Wheelaghan, O., Conejero, S., Poteau, R., Philippot, K., & Chaudret, B. (2011). Ruthenium Nanoparticles Stabilized by N-Heterocyclic Carbenes: Ligand Location and Influence on Reactivity. Angewandte Chemie International Edition, 50(50), 12080-12084. doi:10.1002/anie.201106348Martínez-Prieto, L. M., Ferry, A., Rakers, L., Richter, C., Lecante, P., Philippot, K., … Glorius, F. (2016). Long-chain NHC-stabilized RuNPs as versatile catalysts for one-pot oxidation/hydrogenation reactions. Chemical Communications, 52(26), 4768-4771. doi:10.1039/c6cc01130fLara, P., Suárez, A., Collière, V., Philippot, K., & Chaudret, B. (2013). Platinum N-Heterocyclic Carbene Nanoparticles as New and Effective Catalysts for the Selective Hydrogenation of Nitroaromatics. ChemCatChem, 6(1), 87-90. doi:10.1002/cctc.201300821Ranganath, K. V. S., Schäfer, A. H., & Glorius, F. (2011). Comparison of Superparamagnetic Fe3O4-Supported N-Heterocyclic Carbene-Based Catalysts for Enantioselective Allylation. ChemCatChem, 3(12), 1889-1891. doi:10.1002/cctc.201100201Mollar-Cuni, A., Ventura-Espinosa, D., Martín, S., Mayoral, Á., Borja, P., & Mata, J. A. (2018). Stabilization of Nanoparticles Produced by Hydrogenation of Palladium–N-Heterocyclic Carbene Complexes on the Surface of Graphene and Implications in Catalysis. ACS Omega, 3(11), 15217-15228. doi:10.1021/acsomega.8b02193Hurst, E. C., Wilson, K., Fairlamb, I. J. S., & Chechik, V. (2009). N-Heterocyclic carbene coated metal nanoparticles. New Journal of Chemistry, 33(9), 1837. doi:10.1039/b905559bRanganath, K. V. S., Kloesges, J., Schäfer, A. H., & Glorius, F. (2010). Asymmetric Nanocatalysis: N-Heterocyclic Carbenes as Chiral Modifiers of Fe3O4/Pd nanoparticles. Angewandte Chemie International Edition, 49(42), 7786-7789. doi:10.1002/anie.201002782Planellas, M., Pleixats, R., & Shafir, A. (2012). Palladium Nanoparticles in Suzuki Cross-Couplings: Tapping into the Potential of Tris-Imidazolium Salts for Nanoparticle Stabilization. Advanced Synthesis & Catalysis, 354(4), 651-662. doi:10.1002/adsc.201100574Martínez-Prieto, L. M., Ferry, A., Lara, P., Richter, C., Philippot, K., Glorius, F., & Chaudret, B. (2015). New Route to Stabilize Ruthenium Nanoparticles with Non-Isolable Chiral N-Heterocyclic Carbenes. Chemistry - A European Journal, 21(48), 17495-17502. doi:10.1002/chem.201502601Hintermair, U., Hashmi, S. M., Elimelech, M., & Crabtree, R. H. (2012). Particle Formation during Oxidation Catalysis with Cp* Iridium Complexes. Journal of the American Chemical Society, 134(23), 9785-9795. doi:10.1021/ja3033026Axet, M. R., Conejero, S., & Gerber, I. C. (2018). Ligand Effects on the Selective Hydrogenation of Nitrobenzene to Cyclohexylamine Using Ruthenium Nanoparticles as Catalysts. ACS Applied Nano Materials, 1(10), 5885-5894. doi:10.1021/acsanm.8b01549Martínez-Prieto, L. M., Rakers, L., López-Vinasco, A. M., Cano, I., Coppel, Y., Philippot, K., … van Leeuwen, P. W. N. M. (2017). Soluble Platinum Nanoparticles Ligated by Long-Chain N-Heterocyclic Carbenes as Catalysts. Chemistry - A European Journal, 23(52), 12779-12786. doi:10.1002/chem.201702288Moraes, L. C., Figueiredo, R. C., Espinós, J. P., Vattier, F., Franconetti, A., Jaime, C., … Conejero, S. (2020). Platinum nanoparticles stabilized by N-heterocyclic thiones. Synthesis and catalytic activity in mono- and di-hydroboration of alkynes. Nanoscale, 12(12), 6821-6831. doi:10.1039/d0nr00251hBouzouita, D., Lippens, G., Baquero, E. A., Fazzini, P. F., Pieters, G., Coppel, Y., … Chaudret, B. (2019). Tuning the catalytic activity and selectivity of water-soluble bimetallic RuPt nanoparticles by modifying their surface metal distribution. Nanoscale, 11(35), 16544-16552. doi:10.1039/c9nr04149dPfeifer, V., Certiat, M., Bouzouita, D., Palazzolo, A., Garcia‐Argote, S., Marcon, E., … Pieters, G. (2020). Cover Feature: Hydrogen Isotope Exchange Catalyzed by Ru Nanocatalysts: Labelling of Complex Molecules Containing N ‐Heterocycles and Reaction Mechanism Insights (Chem. Eur. J. 22/2020). Chemistry – A European Journal, 26(22), 4883-4883. doi:10.1002/chem.202000874Amiens, C., Chaudret, B., Ciuculescu-Pradines, D., Collière, V., Fajerwerg, K., Fau, P., … Philippot, K. (2013). Organometallic approach for the synthesis of nanostructures. New Journal of Chemistry, 37(11), 3374. doi:10.1039/c3nj00650fMartínez-Prieto, L. M., & Chaudret, B. (2018). Organometallic Ruthenium Nanoparticles: Synthesis, Surface Chemistry, and Insights into Ligand Coordination. Accounts of Chemical Research, 51(2), 376-384. doi:10.1021/acs.accounts.7b00378Bradley, J. S., Millar, J., Hill, E. W., & Melchior, M. (1990). The characterization of adsorbed carbon monoxide on colloidal palladium by infrared and high resolution 13C nuclear magnetic resonance spectroscopy. Journal of the Chemical Society, Chemical Communications, (9), 705. doi:10.1039/c39900000705Bradley, J. S., Hill, E. W., Behal, S., Klein, C., Duteil, A., & Chaudret, B. (1992). Preparation and characterization of organosols of monodispersed nanoscale palladium. Particle size effects in the binding geometry of adsorbed carbon monoxide. Chemistry of Materials, 4(6), 1234-1239. doi:10.1021/cm00024a023Novio, F., Philippot, K., & Chaudret, B. (2010). Location and Dynamics of CO Co-ordination on Ru Nanoparticles: A Solid State NMR Study. Catalysis Letters, 140(1-2), 1-7. doi:10.1007/s10562-010-0428-7Rühling, A., Schaepe, K., Rakers, L., Vonhören, B., Tegeder, P., Ravoo, B. J., & Glorius, F. (2016). Modular Bidentate Hybrid NHC-Thioether Ligands for the Stabilization of Palladium Nanoparticles in Various Solvents. Angewandte Chemie International Edition, 55(19), 5856-5860. doi:10.1002/anie.201508933Bradley, J. S., Millar, J. M., Hill, E. W., Behal, S., Chaudret, B., & Duteil, A. (1991). Surface chemistry on colloidal metals: spectroscopic study of adsorption of small molecules. Faraday Discussions, 92, 255. doi:10.1039/fd9919200255Cormary, B., Dumestre, F., Liakakos, N., Soulantica, K., & Chaudret, B. (2013). Organometallic precursors of nano-objects, a critical view. Dalton Transactions, 42(35), 12546. doi:10.1039/c3dt50870fMarbaix, J., Mille, N., Lacroix, L.-M., Asensio, J. M., Fazzini, P.-F., Soulantica, K., … Chaudret, B. (2020). Tuning the Composition of FeCo Nanoparticle Heating Agents for Magnetically Induced Catalysis. ACS Applied Nano Materials, 3(4), 3767-3778. doi:10.1021/acsanm.0c00444Martínez-Prieto, L. M., Marbaix, J., Asensio, J. M., Cerezo-Navarrete, C., Fazzini, P.-F., Soulantica, K., … Corma, A. (2020). Ultrastable Magnetic Nanoparticles Encapsulated in Carbon for Magnetically Induced Catalysis. ACS Applied Nano Materials, 3(7), 7076-7087. doi:10.1021/acsanm.0c01392García-Antón, J., Axet, M. R., Jansat, S., Philippot, K., Chaudret, B., Pery, T., … Limbach, H.-H. (2008). Reactions of Olefins with Ruthenium Hydride Nanoparticles: NMR Characterization, Hydride Titration, and Room-Temperature CC Bond Activation. Angewandte Chemie International Edition, 47(11), 2074-2078. doi:10.1002/anie.200704763Lara, P., Philippot, K., & Chaudret, B. (2012). Organometallic Ruthenium Nanoparticles: A Comparative Study of the Influence of the Stabilizer on their Characteristics and Reactivity. ChemCatChem, 5(1), 28-45. doi:10.1002/cctc.201200666Axet, M. R., & Philippot, K. (2020). Catalysis with Colloidal Ruthenium Nanoparticles. Chemical Reviews, 120(2), 1085-1145. doi:10.1021/acs.chemrev.9b00434Dupont, J., Fonseca, G. S., Umpierre, A. P., Fichtner, P. F. P., & Teixeira, S. R. (2002). Transition-Metal Nanoparticles in Imidazolium Ionic Liquids:  Recycable Catalysts for Biphasic Hydrogenation Reactions. Journal of the American Chemical Society, 124(16), 4228-4229. doi:10.1021/ja025818uVidoni, O., Philippot, K., Amiens, C., Chaudret, B., Balmes, O., Malm, J.-O., … Casanove, M.-J. (1999). Novel, Spongelike Ruthenium Particles of Controllable Size Stabilized Only by Organic Solvents. Angewandte Chemie International Edition, 38(24), 3736-3738. doi:10.1002/(sici)1521-3773(19991216)38:243.0.co;2-eHulea, V., Brunel, D., Galarneau, A., Philippot, K., Chaudret, B., Kooyman, P. J., & Fajula, F. (2005). Synthesis of well-dispersed ruthenium nanoparticles inside mesostructured porous silica under mild conditions. Microporous and Mesoporous Materials, 79(1-3), 185-194. doi:10.1016/j.micromeso.2004.10.041Glaria, A., Soulé, S., Hallali, N., Ojo, W.-S., Mirjolet, M., Fuks, G., … Nayral, C. (2018). Silica coated iron nanoparticles: synthesis, interface control, magnetic and hyperthermia properties. RSC Advances, 8(56), 32146-32156. doi:10.1039/c8ra06075dMartínez-Prieto, L. M., Puche, M., Cerezo-Navarrete, C., & Chaudret, B. (2019). Uniform Ru nanoparticles on N-doped graphene for selective hydrogenation of fatty acids to alcohols. Journal of Catalysis, 377, 429-437. doi:10.1016/j.jcat.2019.07.040Vignolle, J., & Tilley, T. D. (2009). N-Heterocyclic carbene-stabilized gold nanoparticles and their assembly into 3D superlattices. Chemical Communications, (46), 7230. doi:10.1039/b913884fPan, C., Pelzer, K., Philippot, K., Chaudret, B., Dassenoy, F., Lecante, P., & Casanove, M.-J. (2001). Ligand-Stabilized Ruthenium Nanoparticles:  Synthesis, Organization, and Dynamics. Journal of the American Chemical Society, 123(31), 7584-7593. doi:10.1021/ja003961mMartinez-Espinar, F., Blondeau, P., Nolis, P., Chaudret, B., Claver, C., Castillón, S., & Godard, C. (2017). NHC-stabilised Rh nanoparticles: Surface study and application in the catalytic hydrogenation of aromatic substrates. Journal of Catalysis, 354, 113-127. doi:10.1016/j.jcat.2017.08.010Martínez-Prieto, L. M., Baquero, E. A., Pieters, G., Flores, J. C., de Jesús, E., Nayral, C., … Chaudret, B. (2017). Monitoring of nanoparticle reactivity in solution: interaction of l-lysine and Ru nanoparticles probed by chemical shift perturbation parallels regioselective H/D exchange. Chemical Communications, 53(43), 5850-5853. doi:10.1039/c7cc02445bDe los Bernardos, M. D., Pérez-Rodríguez, S., Gual, A., Claver, C., & Godard, C. (2017). Facile synthesis of NHC-stabilized Ni nanoparticles and their catalytic application in the Z-selective hydrogenation of alkynes. Chemical Communications, 53(56), 7894-7897. doi:10.1039/c7cc01779kVoutchkova, A. M., Appelhans, L. N., Chianese, A. R., & Crabtree, R. H. (2005). Disubstituted Imidazolium-2-Carboxylates as Efficient Precursors to N-Heterocyclic Carbene Complexes of Rh, Ru, Ir, and Pd. Journal of the American Chemical Society, 127(50), 17624-17625. doi:10.1021/ja056625kRichter, C., Schaepe, K., Glorius, F., & Ravoo, B. J. (2014). Tailor-made N-heterocyclic carbenes for nanoparticle stabilization. Chemical Communications, 50(24), 3204. doi:10.1039/c4cc00654bYe, R., Zhukhovitskiy, A. V., Kazantsev, R. V., Fakra, S. C., Wickemeyer, B. B., Toste, F. D., & Somorjai, G. A. (2018). Supported Au Nanoparticles with N-Heterocyclic Carbene Ligands as Active and Stable Heterogeneous Catalysts for Lactonization. Journal of the American Chemical Society, 140(11), 4144-4149. doi:10.1021/jacs.8b01017Man, R. W. Y., Li, C.-H., MacLean, M. W. A., Zenkina, O. V., Zamora, M. T., Saunders, L. N., … Crudden, C. M. (2018). Ultrastable Gold Nanoparticles Modified by Bidentate N-Heterocyclic Carbene Ligands. Journal of the American Chemical Society, 140(5), 1576-1579. doi:10.1021/jacs.7b08516Lu, H., Zhou, Z., Prezhdo, O. V., & Brutchey, R. L. (2016). Exposing the Dynamics and Energetics of the N-Heterocyclic Carbene–Nanocrystal Interface. Journal of the American Chemical Society, 138(45), 14844-14847. doi:10.1021/jacs.6b09065Baquero, E. A., Tricard, S., Flores, J. C., de Jesús, E., & Chaudret, B. (2014). Highly Stable Water-Soluble Platinum Nanoparticles Stabilized by Hydrophilic N-Heterocyclic Carbenes. Angewandte Chemie International Edition, 53(48), 13220-13224. doi:10.1002/anie.201407758Baquero, E. A., Tricard, S., Coppel, Y., Flores, J. C., Chaudret, B., & de Jesús, E. (2018). Water-soluble platinum nanoparticles stabilized by sulfonated N-heterocyclic carbenes: influence of the synthetic approach. Dalton Transactions, 47(12), 4093-4104. doi:10.1039/c8dt00240aAsensio, J. M., Tricard, S., Coppel, Y., Andrés, R., Chaudret, B., & de Jesús, E. (2016). Knight Shift in 13 C NMR Resonances Confirms the Coordination of N‐Heterocyclic Carbene Ligands to Water‐Soluble Palladium Nanoparticles. Angewandte Chemie International Edition, 56(3), 865-869. doi:10.1002/anie.201610251Asensio, J. M., Tricard, S., Coppel, Y., Andrés, R., Chaudret, B., & de Jesús, E. (2017). Synthesis of Water-Soluble Palladium Nanoparticles Stabilized by Sulfonated N-Heterocyclic Carbenes. Chemistry - A European Journal, 23(54), 13435-13444. doi:10.1002/chem.201702204Duncan, T. M., Zilm, K. W., Hamilton, D. M., & Root, T. W. (1989). Adsorbed states of carbon monoxide on dispersed metals: a high-resolution solid-state NMR study. The Journal of Physical Chemistry, 93(6), 2583-2590. doi:10.1021/j100343a067Terrill, R. H., Postlethwaite, T. A., Chen, C., Poon, C.-D., Terzis, A., Chen, A., … Wignall, G. (1995). Monolayers in Three Dimensions: NMR, SAXS, Thermal, and Electron Hopping Studies of Alkanethiol Stabilized Gold Clusters. Journal of the American Chemical Society, 117(50), 12537-12548. doi:10.1021/ja00155a017Badia, A., Cuccia, L., Demers, L., Morin, F., & Lennox, R. B. (1997). Structure and Dynamics in Alkanethiolate Monolayers Self-Assembled on Gold Nanoparticles:  A DSC, FT-IR, and Deuterium NMR Study. Journal of the American Chemical Society, 119(11), 2682-2692. doi:10.1021/ja963571tRamirez, E., Jansat, S., Philippot, K., Lecante, P., Gomez, M., Masdeu-Bultó, A. M., & Chaudret, B. (2004). Influence of organic ligands on the stabilization of palladium nanoparticles. Journal of Organometallic Chemistry, 689(24), 4601-4610. doi:10.1016/j.jorganchem.2004.09.006Pregosin, P. S., & Ammann, C. (1989). Applications of 2-dimensional NMR in organometallic chemistry. Pure and Applied Chemistry, 61(10), 1771-1776. doi:10.1351/pac198961101771BRADLEY, J. (1991). Surface chemistry on transition metal colloids?an infrared and NMR study of carbon monoxide adsorption on colloidal platinum. Journal of Catalysis, 129(2), 530-539. doi:10.1016/0021-9517(91)90056-aBradley, J. S., Millar, J. M., & Hill, E. W. (1991). Surface chemistry on colloidal metals: a high-resolution NMR study of carbon monoxide adsorbed on metallic palladium crystallites in colloidal suspension. Journal of the American Chemical Society, 113(10), 4016-4017. doi:10.1021/ja00010a067De Caro, D., & Bradley, J. S. (1998). Investigation of the surface structure of colloidal platinum by infrared spectroscopy of adsorbed CO. New Journal of Chemistry, 22(11), 1267-1273. doi:10.1039/a803934hDuteil, A., Queau, R., Chaudret, B., Mazel, R., Roucau, C., & Bradley, J. S. (1993). Preparation of organic solutions or solid films of small particles of ruthenium, palladium, and platinum from organometallic precursors in the presence of cellulose derivatives. Chemistry of Materials, 5(3), 341-347. doi:10.1021/cm00027a017Kinayyigit, S., Lara, P., Lecante, P., Philippot, K., & Chaudret, B. (2014). Probing the surface of platinum nanoparticles with13CO by solid-state NMR and IR spectroscopies. Nanoscale, 6(1), 539-546. doi:10.1039/c3nr03948jLara, P., Martínez-Prieto, L. M., Roselló-Merino, M., Richter, C., Glorius, F., Conejero, S., … Chaudret, B. (2016). NHC-stabilized Ru nanoparticles: Synthesis and surface studies. Nano-Structures & Nano-Objects, 6, 39-45. doi:10.1016/j.nanoso.2016.03.003Martínez-Prieto, L. M., Cano, I., Márquez, A., Baquero, E. A., Tricard, S., Cusinato, L., … van Leeuwen, P. W. N. M. (2017). Zwitterionic amidinates as effective ligands for platinum nanoparticle hydrogenation catalysts. Chemical Science, 8(4), 2931-2941. doi:10.1039/c6sc05551fMartínez-Prieto, L. M., Urbaneja, C., Palma, P., Cámpora, J., Philippot, K., & Chaudret, B. (2015). A betaine adduct of N-heterocyclic carbene and carbodiimide, an efficient ligand to produce ultra-small ruthenium nanoparticles. Chemical Communications, 51(22), 4647-4650. doi:10.1039/c5cc00211gBadia, A., Gao, W., Singh, S., Demers, L., Cuccia, L., & Reven, L. (1996). Structure and Chain Dynamics of Alkanethiol-Capped Gold Colloids. Langmuir, 12(5), 1262-1269. doi:10.1021/la9510487Favier, I., Massou, S., Teuma, E., Philippot, K., Chaudret, B., & Gómez, M. (2008). A new and specific mode of stabilization of metallic nanoparticles. Chemical Communications, (28), 3296. doi:10.1039/b804402cSilbestri, G. F., Flores, J. C., & de Jesús, E. (2012). Water-Soluble N-Heterocyclic Carbene Platinum(0) Complexes: Recyclable Catalysts for the Hydrosilylation of Alkynes in Water at Room Temperature. Organometallics, 31(8), 3355-3360. doi:10.1021/om300148qBaquero, E. A., Silbestri, G. F., Gómez-Sal, P., Flores, J. C., & de Jesús, E. (2013). Sulfonated Water-Soluble N-Heterocyclic Carbene Silver(I) Complexes: Behavior in Aqueous Medium and as NHC-Transfer Agents to Platinum(II). Organometallics, 32(9), 2814-2826. doi:10.1021/om400228sBaquero, E. A., Flores, J. C., Perles, J., Gómez-Sal, P., & de Jesús, E. (2014). Water-Soluble Mono- and Dimethyl N-Heterocyclic Carbene Platinum(II) Complexes: Synthesis and Reactivity. Organometallics, 33(19), 5470-5482. doi:10.1021/om500753vBerthon-Gelloz, G., Buisine, O., Brière, J.-F., Michaud, G., Stérin, S., Mignani, G., … Markó, I. E. (2005). Synthetic and structural studies of NHC–Pt(dvtms) complexes and their application as alkene hydrosilylation catalysts (NHC=N-heterocyclic carbene, dvtms=divinyltetramethylsiloxane). Journal of Organometallic Chemistry, 690(24-25), 6156-6168. doi:10.1016/j.jorganchem.2005.08.020Knight, W. D. (1949). Nuclear Magne

    Uniform Ru nanoparticles on N-doped graphene for selective hydrogenation of fatty acids to alcohols

    Full text link
    [EN] Ruthenium nanoparticles (Ru NPs) supported on reduced-graphene oxide doped with N (NH2-rGO) was synthesized and used for the selective hydrogenation of fatty acids to alcohols, being the hydrogenation of palmitic acid selected as model. Ru was stabilized forming uniform nanometer size particles on N-doped graphene (Ru/NH2-rGO). The resultant catalyst was very selective for the carbonyl reduction giving 93% of the aliphatic alcohol at 99% conversion. The Ru/NH2-rGO catalysts was more active and selective than the corresponding Ru on non-doped graphene (Ru/rGO) or Ru on carbon (Ru/C). Mechanistic studies points to a dual mechanism for H-2 dissociation, i.e. homolytic and heterolytic cleavage exists on the Ru/NH2-rGO, while only the homolytic H-2 dissociation occurs on Ru/rGO. This heterolytic splitting, which activates the carbonyl groups and facilitates the hydrogenation of aliphatic acids, is due to the presence of basic centres next to the Ru atoms. The presence of N atoms also increases the stability of the catalyst, allowing a reuse up to four times. (C) 2019 Elsevier Inc. All rights reserved.The authors thank Institute de Tecnologia Quimica (ITQ), Consejo Superior de Investigaciones Cientificas (CSIC) and Universitat Politecnica de Valencia (UPV) for the facilities and Severo Ochoa excellence programme, "Juan de la Cierva" programme and Primeros Proyectos de Investigacion (PAID-06-18) for financial support. We gratefully acknowledge Prof. A. Corma for his invaluable contribution to this research. We also thank the Electron Microscopy Service of the UPV for TEM facilities, Jose A. Vidal-Moya (ITQ CSIC-UPV) for NMR measurements and J. Gaona and C. Morales for their assistance in catalytic reactions.Martínez-Prieto, LM.; Puche Panadero, M.; Cerezo-Navarrete, C.; Chaudret, B. (2019). Uniform Ru nanoparticles on N-doped graphene for selective hydrogenation of fatty acids to alcohols. Journal of Catalysis. 377:429-437. https://doi.org/10.1016/j.jcat.2019.07.040S42943737

    Controlling the selectivity of bimetallic platinum¿ruthenium nanoparticles supported on N-doped graphene by adjusting their metal composition

    Full text link
    [EN] Mono and bimetallic platinum-ruthenium nanoparticles have been generated on N-doped graphene (NH2-rGO) following an organometallic approach. Surface and structural studies confirmed the formation of bimetallic MNPs with controlled metal compositions. To evaluate the activity/selectivity of the different materials prepared we used the hydrogenation of acetophenone as a model reaction. We found that both the activity and selectivity of the supported-bimetallic NPs are highly dependent on the support and the atomic composition. The higher the Pt/Ru ratio, the higher the selectivity towards 1-phenylethanol. Indeed, a remarkable activity and selectivity in the hydrogenation of acetophenone was observed for Pt5Ru1@NH2-rGO. The reactivity of these catalysts was also investigated in the hydrogenation of other substrates such as functionalized arenes (i.e. nitrobenzene and benzaldehyde) or hydroxymethylfurfural (HMF), demonstrating that it is possible to control the activity and selectivity of bimetallic Pt-Ru MNPs supported on N-doped graphene by adjusting their metal composition.The authors thank Instituto de Tecnologia Quimica (ITQ), Consejo Superior de Investigaciones Cientificas (CSIC), and Universitat Politecnica de Valencia (UPV) for the facilities, and Severo Ochoa excellence programme (SEV-2016-0683), "Juan de la Cierva" programme (IJCI-2016-27966) and Primero Proyectos de Investigacion (PAID-06-18) for financial support. C. C.-N. gratefully thanks Generalitat Valenciana predoctoral fellowship (GVA: ACIF/2019/076). We also thank the Electron Microscopy Service of the UPV for TEM facilities and A. Garcia Zaragoza for his assistance in catalytic reactions.Cerezo-Navarrete, C.; Mathieu, Y.; Puche Panadero, M.; Morales, C.; Concepción Heydorn, P.; Martínez-Prieto, LM.; Corma Canós, A. (2021). Controlling the selectivity of bimetallic platinum¿ruthenium nanoparticles supported on N-doped graphene by adjusting their metal composition. Catalysis Science & Technology. 11(2):494-505. https://doi.org/10.1039/D0CY02379E49450511

    Ultrastable Magnetic Nanoparticles Encapsulated in Carbon for Magnetically Induced Catalysis

    Full text link
    [EN] Magnetically induced catalysis using magnetic nanoparticles (MagNPs) as heating agents is a new efficient method to perform reactions at high temperatures. However, the main limitation is the lack of stability of the catalysts operating in such harsh conditions. Normally, above 500 degrees C, significant sintering of MagNPs takes place. Here we present encapsulated magnetic FeCo and Co NPs in carbon (Co@C and FeCo@C) as an ultrastable heating material suitable for high-temperature magnetic catalysis. Indeed, FeCo@C or a mixture of FeCo@C:Co@C (2:1) decorated with Ni or Pt-Sn showed good stability in terms of temperature and catalytic performances. In addition, consistent conversions and selectivities regarding conventional heating were observed for CO2 methanation (Sabatier reaction), propane dehydrogenation (PDH), and propane dry reforming (PDR). Thus, the encapsulation of MagNPs in carbon constitutes a major advance in the development of stable catalysts for high-temperature magnetically induced catalysis.The authors thank the Instituto de Tecnologia Quimica (ITQ), Consejo Superior de Investigaciones Cientificas (CSIC), Universitat Politecnica de València (UPV) for the facilities and Severo Ochoa programe (SEV-2016-0683), "Juan de la Cierva" by MINECO (IJCI-2016-27966), and Primero Proyectos de Investigación PAID-06-18 (SP20180088) for financial support. The authors acknowledge ERC Advanced Grants (MONACAT-2015-694159 and SynCatMatch-2014671093). We also thank the Electron Microscopy Service of the UPV for TEM facilities.Martínez-Prieto, LM.; Marbaix, J.; Asensio, JM.; Cerezo-Navarrete, C.; Fazzini, P.; Soulantica, K.; Chaudret, B.... (2020). Ultrastable Magnetic Nanoparticles Encapsulated in Carbon for Magnetically Induced Catalysis. ACS Applied Nano Materials. 3(7):7076-7087. https://doi.org/10.1021/acsanm.0c01392S7076708737Ceylan, S., Friese, C., Lammel, C., Mazac, K., & Kirschning, A. (2008). Inductive Heating for Organic Synthesis by Using Functionalized Magnetic Nanoparticles Inside Microreactors. Angewandte Chemie International Edition, 47(46), 8950-8953. doi:10.1002/anie.200801474Ceylan, S., Coutable, L., Wegner, J., & Kirschning, A. (2011). Inductive Heating with Magnetic Materials inside Flow Reactors. Chemistry - A European Journal, 17(6), 1884-1893. doi:10.1002/chem.201002291Houlding, T. K., Gao, P., Degirmenci, V., Tchabanenko, K., & Rebrov, E. V. (2015). Mechanochemical synthesis of TiO2/NiFe2O4 magnetic catalysts for operation under RF field. Materials Science and Engineering: B, 193, 175-180. doi:10.1016/j.mseb.2014.12.011Asensio, J. M., Miguel, A. B., Fazzini, P., van Leeuwen, P. W. N. M., & Chaudret, B. (2019). Hydrodeoxygenation Using Magnetic Induction: High‐Temperature Heterogeneous Catalysis in Solution. Angewandte Chemie International Edition, 58(33), 11306-11310. doi:10.1002/anie.201904366Liu, Y., Gao, P., Cherkasov, N., & Rebrov, E. V. (2016). Direct amide synthesis over core–shell TiO2@NiFe2O4 catalysts in a continuous flow radiofrequency-heated reactor. RSC Advances, 6(103), 100997-101007. doi:10.1039/c6ra22659kLiu, Y., Cherkasov, N., Gao, P., Fernández, J., Lees, M. R., & Rebrov, E. V. (2017). The enhancement of direct amide synthesis reaction rate over TiO 2 @SiO 2 @NiFe 2 O 4 magnetic catalysts in the continuous flow under radiofrequency heating. Journal of Catalysis, 355, 120-130. doi:10.1016/j.jcat.2017.09.010Meffre, A., Mehdaoui, B., Connord, V., Carrey, J., Fazzini, P. F., Lachaize, S., … Chaudret, B. (2015). Complex Nano-objects Displaying Both Magnetic and Catalytic Properties: A Proof of Concept for Magnetically Induced Heterogeneous Catalysis. Nano Letters, 15(5), 3241-3248. doi:10.1021/acs.nanolett.5b00446Bordet, A., Lacroix, L.-M., Fazzini, P.-F., Carrey, J., Soulantica, K., & Chaudret, B. (2016). Magnetically Induced Continuous CO2Hydrogenation Using Composite Iron Carbide Nanoparticles of Exceptionally High Heating Power. Angewandte Chemie International Edition, 55(51), 15894-15898. doi:10.1002/anie.201609477Mortensen, P. M., Engbæk, J. S., Vendelbo, S. B., Hansen, M. F., & Østberg, M. (2017). Direct Hysteresis Heating of Catalytically Active Ni–Co Nanoparticles as Steam Reforming Catalyst. Industrial & Engineering Chemistry Research, 56(47), 14006-14013. doi:10.1021/acs.iecr.7b02331Marbaix, J., Mille, N., Lacroix, L.-M., Asensio, J. M., Fazzini, P.-F., Soulantica, K., … Chaudret, B. (2020). Tuning the Composition of FeCo Nanoparticle Heating Agents for Magnetically Induced Catalysis. ACS Applied Nano Materials, 3(4), 3767-3778. doi:10.1021/acsanm.0c00444Vinum, M. G., Almind, M. R., Engbæk, J. S., Vendelbo, S. B., Hansen, M. F., Frandsen, C., … Mortensen, P. M. (2018). Dual‐Function Cobalt–Nickel Nanoparticles Tailored for High‐Temperature Induction‐Heated Steam Methane Reforming. Angewandte Chemie International Edition, 57(33), 10569-10573. doi:10.1002/anie.201804832Kale, S. S., Asensio, J. M., Estrader, M., Werner, M., Bordet, A., Yi, D., … Chaudret, B. (2019). Iron carbide or iron carbide/cobalt nanoparticles for magnetically-induced CO2 hydrogenation over Ni/SiRAlOx catalysts. Catalysis Science & Technology, 9(10), 2601-2607. doi:10.1039/c9cy00437hVarsano, F., Bellusci, M., La Barbera, A., Petrecca, M., Albino, M., & Sangregorio, C. (2019). Dry reforming of methane powered by magnetic induction. International Journal of Hydrogen Energy, 44(38), 21037-21044. doi:10.1016/j.ijhydene.2019.02.055Wang, W., Duong-Viet, C., Xu, Z., Ba, H., Tuci, G., Giambastiani, G., … Pham-Huu, C. (2020). CO2 methanation under dynamic operational mode using nickel nanoparticles decorated carbon felt (Ni/OCF) combined with inductive heating. Catalysis Today, 357, 214-220. doi:10.1016/j.cattod.2019.02.050Benkowsky, G. Induktionserwärmung: Härten, Glühen, Schmelzen, Löten, Schweißn: Grundlagen und praktische Anleitungen für Induktionserwärmungsverfahren, insbesondere auf dem Gebiet der Hochfrequenzerwärmung, 5th ed. Verlag Technik: Berlin, 1990; p 12.Carrey, J., Mehdaoui, B., & Respaud, M. (2011). Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization. Journal of Applied Physics, 109(8), 083921. doi:10.1063/1.3551582Khodakov, A. Y., Chu, W., & Fongarland, P. (2007). Advances in the Development of Novel Cobalt Fischer−Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels. Chemical Reviews, 107(5), 1692-1744. doi:10.1021/cr050972vLiu, J., Guo, Z., Childers, D., Schweitzer, N., Marshall, C. L., Klie, R. F., … Meyer, R. J. (2014). Correlating the degree of metal–promoter interaction to ethanol selectivity over MnRh/CNTs CO hydrogenation catalysts. Journal of Catalysis, 313, 149-158. doi:10.1016/j.jcat.2014.03.002Ghaib, K., Nitz, K., & Ben-Fares, F.-Z. (2016). Chemical Methanation of CO2: A Review. ChemBioEng Reviews, 3(6), 266-275. doi:10.1002/cben.201600022Cored, J., García-Ortiz, A., Iborra, S., Climent, M. J., Liu, L., Chuang, C.-H., … Corma, A. (2019). Hydrothermal Synthesis of Ruthenium Nanoparticles with a Metallic Core and a Ruthenium Carbide Shell for Low-Temperature Activation of CO2 to Methane. Journal of the American Chemical Society, 141(49), 19304-19311. doi:10.1021/jacs.9b07088Schiermeier, Q. (2013). Location may stymie wind and solar power benefits. Nature. doi:10.1038/nature.2013.13258Wilhelm, D. ., Simbeck, D. ., Karp, A. ., & Dickenson, R. . (2001). Syngas production for gas-to-liquids applications: technologies, issues and outlook. Fuel Processing Technology, 71(1-3), 139-148. doi:10.1016/s0378-3820(01)00140-0Sattler, J. J. H. B., Ruiz-Martinez, J., Santillan-Jimenez, E., & Weckhuysen, B. M. (2014). Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides. Chemical Reviews, 114(20), 10613-10653. doi:10.1021/cr5002436Siahvashi, A., Chesterfield, D., & Adesina, A. A. (2013). Propane CO2 (dry) reforming over bimetallic Mo–Ni/Al2O3 catalyst. Chemical Engineering Science, 93, 313-325. doi:10.1016/j.ces.2013.02.003Lee, M.-H., Nagaraja, B. M., Lee, K. Y., & Jung, K.-D. (2014). Dehydrogenation of alkane to light olefin over PtSn/θ-Al2O3 catalyst: Effects of Sn loading. Catalysis Today, 232, 53-62. doi:10.1016/j.cattod.2013.10.011Liu, L., Díaz, U., Arenal, R., Agostini, G., Concepción, P., & Corma, A. (2016). Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nature Materials, 16(1), 132-138. doi:10.1038/nmat4757Liu, L., Zakharov, D. N., Arenal, R., Concepcion, P., Stach, E. A., & Corma, A. (2018). Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nature Communications, 9(1). doi:10.1038/s41467-018-03012-6Liu, L., Gao, F., Concepción, P., & Corma, A. (2017). A new strategy to transform mono and bimetallic non-noble metal nanoparticles into highly active and chemoselective hydrogenation catalysts. Journal of Catalysis, 350, 218-225. doi:10.1016/j.jcat.2017.03.014Liu, L., Concepción, P., & Corma, A. (2016). Non-noble metal catalysts for hydrogenation: A facile method for preparing Co nanoparticles covered with thin layered carbon. Journal of Catalysis, 340, 1-9. doi:10.1016/j.jcat.2016.04.006Fu, T., Wang, M., Cai, W., Cui, Y., Gao, F., Peng, L., … Ding, W. (2014). Acid-Resistant Catalysis without Use of Noble Metals: Carbon Nitride with Underlying Nickel. ACS Catalysis, 4(8), 2536-2543. doi:10.1021/cs500523kGarnero, C., Lepesant, M., Garcia-Marcelot, C., Shin, Y., Meny, C., Farger, P., … Chaudret, B. (2019). Chemical Ordering in Bimetallic FeCo Nanoparticles: From a Direct Chemical Synthesis to Application As Efficient High-Frequency Magnetic Material. Nano Letters, 19(2), 1379-1386. doi:10.1021/acs.nanolett.8b05083Lepesant, M., Bardet, B., Lacroix, L.-M., Fau, P., Garnero, C., Chaudret, B., … Gautier, G. (2018). Impregnation of High-Magnetization FeCo Nanoparticles in Mesoporous Silicon: An Experimental Approach. Frontiers in Chemistry, 6. doi:10.3389/fchem.2018.00609Deng, J., Ren, P., Deng, D., & Bao, X. (2015). Enhanced Electron Penetration through an Ultrathin Graphene Layer for Highly Efficient Catalysis of the Hydrogen Evolution Reaction. Angewandte Chemie International Edition, 54(7), 2100-2104. doi:10.1002/anie.201409524Ferrari, A. C. (2007). Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Communications, 143(1-2), 47-57. doi:10.1016/j.ssc.2007.03.052Hadjiev, V. G., Iliev, M. N., & Vergilov, I. V. (1988). The Raman spectra of Co3O4. Journal of Physics C: Solid State Physics, 21(7), L199-L201. doi:10.1088/0022-3719/21/7/007Saxena, P., & Varshney, D. (2017). Effect of d-block element substitution on structural and dielectric properties on iron cobaltite. Journal of Alloys and Compounds, 705, 320-326. doi:10.1016/j.jallcom.2017.02.120Biesinger, M. C., Payne, B. P., Grosvenor, A. P., Lau, L. W. M., Gerson, A. R., & Smart, R. S. C. (2011). Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 257(7), 2717-2730. doi:10.1016/j.apsusc.2010.10.051Cullity, B. D., & Graham, C. D. (2008). Introduction to Magnetic Materials. doi:10.1002/9780470386323Zhang, Y., Zhu, Y., Wang, K., Li, D., Wang, D., Ding, F., … Zhang, Z. (2018). Controlled synthesis of Co2C nanochains using cobalt laurate as precursor: Structure, growth mechanism and magnetic properties. Journal of Magnetism and Magnetic Materials, 456, 71-77. doi:10.1016/j.jmmm.2018.02.014Desvaux, C., Amiens, C., Fejes, P., Renaud, P., Respaud, M., Lecante, P., … Chaudret, B. (2005). Multimillimetre-large superlattices of air-stable iron–cobalt nanoparticles. Nature Materials, 4(10), 750-753. doi:10.1038/nmat1480Desvaux, C., Dumestre, F., Amiens, C., Respaud, M., Lecante, P., Snoeck, E., … Chaudret, B. (2009). FeCo nanoparticles from an organometallic approach: synthesis, organisation and physical properties. Journal of Materials Chemistry, 19(20), 3268. doi:10.1039/b816509bNogués, J., & Schuller, I. K. (1999). Exchange bias. Journal of Magnetism and Magnetic Materials, 192(2), 203-232. doi:10.1016/s0304-8853(98)00266-2Saville, S. L., Qi, B., Baker, J., Stone, R., Camley, R. E., Livesey, K. L., … Thompson Mefford, O. (2014). The formation of linear aggregates in magnetic hyperthermia: Implications on specific absorption rate and magnetic anisotropy. Journal of Colloid and Interface Science, 424, 141-151. doi:10.1016/j.jcis.2014.03.007Mehdaoui, B., Tan, R. P., Meffre, A., Carrey, J., Lachaize, S., Chaudret, B., & Respaud, M. (2013). Increase of magnetic hyperthermia efficiency due to dipolar interactions in low-anisotropy magnetic nanoparticles: Theoretical and experimental results. Physical Review B, 87(17). doi:10.1103/physrevb.87.174419Mehdaoui, B., Meffre, A., Lacroix, L.-M., Carrey, J., Lachaize, S., Respaud, M., … Chaudret, B. (2010). Magnetic anisotropy determination and magnetic hyperthermia properties of small Fe nanoparticles in the superparamagnetic regime. Journal of Applied Physics, 107(9), 09A324. doi:10.1063/1.3348795Serantes, D., Simeonidis, K., Angelakeris, M., Chubykalo-Fesenko, O., Marciello, M., Morales, M. del P., … Martinez-Boubeta, C. (2014). Multiplying Magnetic Hyperthermia Response by Nanoparticle Assembling. The Journal of Physical Chemistry C, 118(11), 5927-5934. doi:10.1021/jp410717mAsensio, J. M., Marbaix, J., Mille, N., Lacroix, L.-M., Soulantica, K., Fazzini, P.-F., … Chaudret, B. (2019). To heat or not to heat: a study of the performances of iron carbide nanoparticles in magnetic heating. Nanoscale, 11(12), 5402-5411. doi:10.1039/c8nr10235jXiong, H., Lin, S., Goetze, J., Pletcher, P., Guo, H., Kovarik, L., … Datye, A. K. (2017). Thermally Stable and Regenerable Platinum–Tin Clusters for Propane Dehydrogenation Prepared by Atom Trapping on Ceria. Angewandte Chemie International Edition, 56(31), 8986-8991. doi:10.1002/anie.201701115Zhu, Y., An, Z., Song, H., Xiang, X., Yan, W., & He, J. (2017). Lattice-Confined Sn (IV/II) Stabilizing Raft-Like Pt Clusters: High Selectivity and Durability in Propane Dehydrogenation. ACS Catalysis, 7(10), 6973-6978. doi:10.1021/acscatal.7b02264Hauser, A. W., Gomes, J., Bajdich, M., Head-Gordon, M., & Bell, A. T. (2013). Subnanometer-sized Pt/Sn alloy cluster catalysts for the dehydrogenation of linear alkanes. Physical Chemistry Chemical Physics, 15(47), 20727. doi:10.1039/c3cp53796jBursavich, J., Abu-Laban, M., Muley, P. D., Boldor, D., & Hayes, D. J. (2019). Thermal performance and surface analysis of steel-supported platinum nanoparticles designed for bio-oil catalytic upconversion during radio frequency-based inductive heating. Energy Conversion and Management, 183, 689-697. doi:10.1016/j.enconman.2019.01.025Pashchenko, D. (2017). Thermodynamic equilibrium analysis of combined dry and steam reforming of propane for thermochemical waste-heat recuperation. International Journal of Hydrogen Energy, 42(22), 14926-14935. doi:10.1016/j.ijhydene.2017.04.284Ojeda, M., Nabar, R., Nilekar, A. U., Ishikawa, A., Mavrikakis, M., & Iglesia, E. (2010). CO activation pathways and the mechanism of Fischer–Tropsch synthesis. Journal of Catalysis, 272(2), 287-297. doi:10.1016/j.jcat.2010.04.012Gao, J., Wang, Y., Ping, Y., Hu, D., Xu, G., Gu, F., & Su, F. (2012). A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Advances, 2(6), 2358. doi:10.1039/c2ra00632dZangeneh, F. T., Taeb, A., Gholivand, K., & Sahebdelfar, S. (2015). Thermodynamic Equilibrium Analysis of Propane Dehydrogenation with Carbon Dioxide and Side Reactions. Chemical Engineering Communications, 203(4), 557-565. doi:10.1080/00986445.2015.1017638Wang, X., Wang, N., Zhao, J., & Wang, L. (2010). Thermodynamic analysis of propane dry and steam reforming for synthesis gas or hydrogen production. International Journal of Hydrogen Energy, 35(23), 12800-12807. doi:10.1016/j.ijhydene.2010.08.132Martínez-Prieto, L. M., Puche, M., Cerezo-Navarrete, C., & Chaudret, B. (2019). Uniform Ru nanoparticles on N-doped graphene for selective hydrogenation of fatty acids to alcohols. Journal of Catalysis, 377, 429-437. doi:10.1016/j.jcat.2019.07.040Soulantica, K., Maisonnat, A., Fromen, M.-C., Casanove, M.-J., & Chaudret, B. (2003). Spontaneous Formation of Ordered 3D Superlattices of Nanocrystals from Polydisperse Colloidal Solutions. Angewandte Chemie International Edition, 42(17), 1945-1949. doi:10.1002/anie.20025048

    The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts

    Get PDF
    Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species’ threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project – and avert – future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups – including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems – www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015

    Ruthenium nanoparticles canopied by heptagon-containing saddle-shaped nanographenes as efficient aromatic hydrogenation catalysts

    No full text
    The search for new ligands capable of modifying the metal nanoparticle (MNP) catalytic behavior is of increasing interest. Herein we present the first example of RuNPs stabilized with non-planar heptagoncontaining saddle-shaped nanographenes (Ru@1 and Ru@2). The resemblance to graphene-supported MNPs makes these non-planar nanographene-stabilized RuNPs very attractive systems to further investigate graphene–metal interactions. A combined theoretical/experimental study allowed us to explore the coordination modes and dynamics of these nanographenes at the Ru surface. The curvature of these saddle-shaped nanographenes makes them efficient MNP stabilizers. The resulting RuNPs were found to be highly active catalysts for the hydrogenation of aromatics, including platform molecules derived from biomass (i.e. HMF) or liquid organic hydrogen carriers (i.e. N-indole). A significant ligand effect was observed since a minor modification on the hept-HBC structure (C]CH2 instead of C]O) was reflected in a substantial increase in the MNP activity. Finally, the stability of these canopied RuNPs was investigated by multiple addition experiments, proving to be stable catalysts for at least 96 h.European Research Council (ERC) GA 677023FEDER(EDRF) Junta de Andalucia-Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades P18-FR2877Agencia Estatal de Investigacion (AEI)Center for Forestry Research & Experimentation (CIEF) GVA: ACIF/2019/076HPC CALcul en MIdi-Pyrenees (CALMIP) P0611Spanish Government RYC2020-030031-

    Boosting the catalytic performance of graphene-supported Pt nanoparticles via decorating with -SnBun: an efficient approach for aqueous hydrogenation of biomass-derived compounds

    No full text
    The pursuit of new catalysts for the aqueous transformation of biomass-derived compounds under mild conditions is an active area of research. In the present work, the selective hydrogenation of 5-hydroxymethylfurfural (HMF) to 2,5-bishydroxymethylfuran (BHMF) was efficiently accomplished in water at 25 °C and 5 bar H pressure (after 1 h full conversion and 100% selectivity). For this, a novel nanocatalyst based on graphene-supported Pt NPs decorated with Sn-butyl fragments (-SnBu) has been used. More specifically, Pt NPs supported on reduced graphene oxide (rGO) were functionalized with different equivalents (0.2, 0.5, 0.8 and 1 equiv.) of tributyltin hydride (BuSnH) following a surface organometallic chemistry (SOMC) approach. The synthesized catalysts (Pt@rGO/Snx) were fully characterized by state-of-the-art techniques, confirming the presence of Sn-butyl fragments grafted on the platinum surface. The higher the amount of surface -SnBu, the higher the activity of the catalyst, reaching a maximum conversion with Pt@rGO/Sn0.8. Indeed, the latter has proven to be one of the most active catalysts reported to date for the aqueous hydrogenation of HMF to BHMF (estimated TOF = 666.7 h). Furthermore, Pt@rGO/Sn0.8 has been demonstrated to be an efficient catalyst for the reduction of other biomass-derived compounds in water, such as furfural, vanillin or levoglucosenone. Here, the catalytic activity is remarkably boosted by Sn-butyl fragments located on the platinum surface, giving a catalyst several times faster than non-functionalized [email protected] authors thank Instituto de Tecnología Química (ITQ), Instituto de Investigaciones Químicas (IIQ), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV) and Universidad de Sevilla (US) for the facilities. We also thank the electron microscopy service of the UPV for TEM analysis. The authors also acknowledge Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación (PID2021-126080OA-I00, TED2021-132087A-I00 and RYC2020-030031-I), Junta de Andalucía (ProyExcel_00706, P20_01027 and PYC 20 RE 060 UAL) and the University of Seville (VI PP A.TALENTO; 2022/00000400) for financial support. C. Cerezo-Navarrete is grateful for the Generalitat Valenciana predoctoral fellowship (GVA: ACIF/2019/076)

    Controlling the selectivity of bimetallic platinum-ruthenium nanoparticles supported on N-doped graphene by adjusting their metal composition

    No full text
    Mono and bimetallic platinum-ruthenium nanoparticles have been generated on N-doped graphene (NH-rGO) following an organometallic approach. Surface and structural studies confirmed the formation of bimetallic MNPs with controlled metal compositions. To evaluate the activity/selectivity of the different materials prepared we used the hydrogenation of acetophenone as a model reaction. We found that both the activity and selectivity of the supported-bimetallic NPs are highly dependent on the support and the atomic composition. The higher the Pt/Ru ratio, the higher the selectivity towards 1-phenylethanol. Indeed, a remarkable activity and selectivity in the hydrogenation of acetophenone was observed for PtRu@NH-rGO. The reactivity of these catalysts was also investigated in the hydrogenation of other substrates such as functionalized arenes (i.e.nitrobenzene and benzaldehyde) or hydroxymethylfurfural (HMF), demonstrating that it is possible to control the activity and selectivity of bimetallic Pt-Ru MNPs supported on N-doped graphene by adjusting their metal composition.The authors thank Instituto de Tecnología Química (ITQ), Consejo Superior de Investigaciones Científicas (CSIC), and Universitat Politècnica de València (UPV) for the facilities, and Severo Ochoa excellence programme (SEV-2016-0683), “Juan de la Cierva” programme (IJCI-2016-27966) and Primero Proyectos de Investigación (PAID-06-18) for financial support. C. C.-N. gratefully thanks Generalitat Valenciana predoctoral fellowship (GVA: ACIF/2019/076). We also thank the Electron Microscopy Service of the UPV for TEM facilities and A. García Zaragoza for his assistance in catalytic reactions
    corecore