678 research outputs found
Inhibition of the de-myelinating properties of Aicardi-GoutiĂšres syndrome lymphocytes by cathepsin D silencing.
Molecular mechanisms relating interferon-alpha (IFN-alpha) to brain damage have recently been identified in a microarray analysis of cerebrospinal fluid lymphocytes from patients with Aicardi-GoutiĂšres Syndrome (AGS). These findings demonstrate that the inhibition of angiogenesis and the activation of neurotoxic lymphocytes are the major pathogenic mechanisms involved in the brain damage consequent to elevated interferon-alpha levels. Our previous study demonstrated that cathepsin D, a lysosomal aspartyl endopeptidase, is the primary mediator of the neurotoxicity exerted by AGS lymphocytes. Cathepsin D is a potent pro-apoptotic, neurotoxic, and demyelinating protease if it is not properly inhibited by the activities of leukocystatins. In central nervous system white matter, demyelination results from cathepsin over-expression when not balanced by the expression of its inhibitors. In the present study, we used RNA interference to inhibit cathepsin D expression in AGS lymphocytes with the aim of decreasing the neurotoxicity of these cells. Peripheral blood lymphocytes collected from an AGS patient were immortalized and co-cultured with astrocytes in the presence of interferon alpha with or without cathepsin D RNA interference probes. Cathepsin D expression was measured by qPCR, and neurotoxicity was evaluated by microscopy. RNA interference inhibited cathepsin D over-production by 2.6-fold (P<0.01) in AGS lymphocytes cultured in the presence of interferon alpha. AGS lymphocytes treated using RNA interference exhibited a decreased ability to induce neurotoxicity in astrocytes. Such neurotoxicity results in the inhibition of astrocyte growth and the inhibition of the ability of astrocytes to construct web-like aggregates. These results suggest a new strategy for repairing AGS lymphocytes in vitro by inhibiting their ability to induce astrocyte damage and leukodystroph
RNA-seq dataset of subcutaneous adipose tissue: Transcriptional differences between obesity and healthy women
In this data article, we present the dataset from the RNA-Seq analysis of subcutaneous adipose tissue collected from 5 healthy normal weight women (NW, age 37 +/- 6.7 years, BMI 24.3 +/- 0.9 kg/m(2)) and 5 obese women (OBF, age 41 +/- 12.5 years, BMI 38.2 +/- 4.6 kg/m(2)). Raw data obtained from Illumina NextSeq 500 sequencer were processed through BlueBee (R) Genomics Platform while differential expression analysis was performed with the DESeq2 R package and deposited in the GEO public repository with GSE166047 as accession number. Specifically, 20 samples divided between NW (control), OBF (obese women), OBM (obese male) and OBT2D (obese women with diabetes) are deposited in the GSE166047. We hereby describe only 10 samples (5 healthy normal weight women reported as NW and 5 obese women reported as OBF) because we refer to the data published in the article "Transcriptional characterization of Subcutaneous Adipose Tissue in obesity affected women highlights metabolic dysfunction and implications for lncRNAs" (DOI: 10.1016/j.ygeno.2021.09.014). Pathways analyses were performed on g:Profiler, Enrichr, ClueGO and GSEA to gain biological insights on gene expression. Raw data reported in GEO database along with detailed methods description reported in this data article could be reused for comparisons with other datasets on the topic to obtain transcriptional differences in a wider co-hort. Moreover, detailed pathways analysis along with cross-referenced data with other datasets will allow to identify novel dysregulated pathways and genes responsible for this regulation. The biological interpretation of this dataset, along with related in vitro experiments, is reported by Rey et al., in Genomics (DOI: 10.1016/j.ygeno.2021.09.014). (C) 2021 Published by Elsevier Inc
The role of extracellular vesicles in the removal of aggregated TDP43 responsible for ALS/FTD diseases
Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are two related neurodegenerative diseases. ALS is caused by the death of both upper and lower motoneurons, while FTD is characterized predominantly by circumscribed atrophy of the frontal and temporal lobes. ALS and FTD overlap each other. This is demonstrated by the presence of cognitive and behavioral dysfunction in up to 50% of ALS patients and by the presence of frontotemporal atrophy in patients with ALS. Moreover, these diseases are both characterize by the presence of TAR DNA binding protein 43 (TDP43) inclusions in affected cells. These inclusions, observed in 97% of patients with ALS and 50% of patients with FTD, are composed by TDP43 and its C-terminal fragments of 35 kDa (TDP35) and 25 kDa (TDP25). These fragments are highly aggregation-prone and probably neurotoxic. Thus, their removal is protective for cells. The mechanism responsible for the clearance of aggregates and misfolded proteins is the intracellular protein quality control (PQC) system. It consists of molecular chaperones/co- chaperones and the degradative pathways. PQC controls the folding status of proteins and prevents the aggregation of misfolded proteins by refolding them or degrading. Recent data demonstrated that also extracellular secretory pathway, represented especially by exosomes (EXOs) and microvesicles (MVs), might be involved in the removal of misfolded proteins from affected cells. Thus, we evaluated the role of EXOs and MVs in the secretion of TDP43 and its C-terminal fragments, using neuronal cell models. We used ultracentrifugation, that allowed us to separate MVs from EXOs on the basis of their dimension. Then we analyzed them through i) Nanoparticle Tracking Analysis (NanoSight) to establish their number and sizes, and ii) western blot analysis, to characterize their protein content. Our preliminary results show that TDP43, TDP35 and TDP25 are all secreted, mainly by MVs. In particular, we found that MVs are enriched of insoluble forms of TDPs and also of superoxide dismutase 1 (SOD1), another ALS-related protein. Finally, both in EXOs and in MVs, we observed the presence of some important PQC-components, suggesting an interplay between the two pathways. GRANTS: Fondazione Cariplo, Italy (n. 2017_0747); Universit\ue0 degli Studi di Milano e piano di sviluppo UNIMI - linea B
Bone Marrow Mesenchymal Stem Cells Expanded Inside the Nichoid Micro-Scaffold: a Focus on Anti-Inflammatory Response
Purpose Mesenchymal stem cells (MSCs) represent a promising source for stem cell therapies in numerous diseases, including pediatric respiratory system diseases. Characterized by low immunogenicity, high anti-inflammatory, and immunoregulatory features, MSCs demonstrated an excellent therapeutic profile in numerous in vitro and preclinical models. MSCs reside in a specialized physiologic microenvironment, characterized by a unique combination of biophysical, biochemical, and cellular properties. The exploitation of the 3D micro-scaffold Nichoid, which simulates the native niche, enhanced the anti-inflammatory potential of stem cells through mechanical stimulation only, overcoming the limitation of biochemical and xenogenic growth factors application.Materials and Methods In this work, we expanded pediatric bone marrow MSCs (BM-MSCs) inside the Nichoid and performed a complete cellular characterization with different approaches including viability assays, immunofluorescence analyses, RNA sequencing, and gene expression analysis.Results We demonstrated that BM-MSCs inside the scaffold remain in a stem cell quiescent state mimicking the condition of the in vivo environment. Moreover, the gene expression profile of these cells shows a significant up-regulation of genes involved in immune response when compared with the flat control.Conclusion The significant changes in the expression profile of anti-inflammatory genes could potentiate the therapeutic effect of BM-MSCs, encouraging the possible clinical translation for the treatment of pediatric congenital and acquired pulmonary disorders, including post-COVID lung manifestations
Early versus late start of direct oral anticoagulants after acute ischaemic stroke linked to atrial fibrillation: an observational study and individual patient data pooled analysis
OBJECTIVE: The optimal timing to start direct oral anticoagulants (DOACs) after an acute ischaemic stroke (AIS) related to atrial fibrillation (AF) remains unclear. We aimed to compare early (â€5âdays of AIS) versus late (>5âdays of AIS) DOAC-start. METHODS: This is an individual patient data pooled analysis of eight prospective European and Japanese cohort studies. We included patients with AIS related to non-valvular AF where a DOAC was started within 30 days. Primary endpoints were 30-day rates of recurrent AIS and ICH. RESULTS: A total of 2550 patients were included. DOACs were started early in 1362 (53%) patients, late in 1188 (47%). During 212 patient-years, 37 patients had a recurrent AIS (1.5%), 16 (43%) before a DOAC was started; 6 patients (0.2%) had an ICH, all after DOAC-start. In the early DOAC-start group, 23 patients (1.7%) suffered from a recurrent AIS, while 2 patients (0.1%) had an ICH. In the late DOAC-start group, 14 patients (1.2%) suffered from a recurrent AIS; 4 patients (0.3%) suffered from ICH. In the propensity score-adjusted comparison of late versus early DOAC-start groups, there was no statistically significant difference in the hazard of recurrent AIS (aHR=1.2, 95%âCI 0.5 to 2.9, p=0.69), ICH (aHR=6.0, 95%âCI 0.6 to 56.3, p=0.12) or any stroke. CONCLUSIONS: Our results do not corroborate concerns that an early DOAC-start might excessively increase the risk of ICH. The sevenfold higher risk of recurrent AIS than ICH suggests that an early DOAC-start might be reasonable, supporting enrolment into randomised trials comparing an early versus late DOAC-start
Pharmacokinetic and local toxicity studies of liposome-encapsulated and plain mepivacaine solutions in rats
FAPESP - FUNDAĂĂO DE AMPARO Ă PESQUISA DO ESTADO DE SĂO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTĂFICO E TECNOLĂGICOThe pharmacokinetics and the local toxicity of commercial and liposome-encapsulated mepivacaine formulations injected intra-orally in rats were studied. Animals were divided in groups (n=4-6) and treated with 0.1 mL of the formulations: 2% mepivacaine with 1:100,000 epinephrine (MVC(2%EPI)), 3% mepivacaine (MVC(3%)), and 2% liposome-encapsulated mepivacaine (MVC(LUV)). The results showed that the 2% liposome-encapsulated mepivacaine reduced C(max), prolonged AUC(0-infinity) and t(1/2) compared with 3% plain and 2% vasoconstritor-associated mepivacaine, after intraoral injection. In addition, it was also observed that liposomal mepivacaine might protect the tissue against local inflammation evoked by plain or vasoconstrictors-associated mepivacaine, giving supporting evidence for its safety and possible clinical use in dentistry1726876FAPESP - FUNDAĂĂO DE AMPARO Ă PESQUISA DO ESTADO DE SĂO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTĂFICO E TECNOLĂGICOFAPESP - FUNDAĂĂO DE AMPARO Ă PESQUISA DO ESTADO DE SĂO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTĂFICO E TECNOLĂGICOFAPESP [Proc 06/00121-9]2006/00121-9sem informaçã
Extracellular Vesicles Derived From Plasma of Patients With Neurodegenerative Disease Have Common Transcriptomic Profiling
Objectives: There is a lack of effective biomarkers for neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia. Extracellular vesicle (EV) RNA cargo can have an interesting potential as a non-invasive biomarker for NDs. However, the knowledge about the abundance of EV-mRNAs and their contribution to neurodegeneration is not clear. Methods: Large and small EVs (LEVs and SEVs) were isolated from plasma of patients and healthy volunteers (control, CTR) by differential centrifugation and filtration, and RNA was extracted. Whole transcriptome was carried out using next generation sequencing (NGS). Results: Coding RNA (i.e., mRNA) but not long non-coding RNAs (lncRNAs) in SEVs and LEVs of patients with ALS could be distinguished from healthy CTRs and from other NDs using the principal component analysis (PCA). Some mRNAs were found in commonly deregulated between SEVs of patients with ALS and frontotemporal dementia (FTD), and they were classified in mRNA processing and splicing pathways. In LEVs, instead, one mRNA and one antisense RNA (i.e., MAP3K7CL and AP003068.3) were found to be in common among ALS, FTD, and PD. No deregulated mRNAs were found in EVs of patients with AD. Conclusion: Different RNA regulation occurs in LEVs and SEVs of NDs. mRNAs and lncRNAs are present in plasma-derived EVs of NDs, and there are common and specific transcripts that characterize LEVs and SEVs from the NDs considered in this study
Agenesis of the putamen and globus pallidus caused by recessive mutations in the homeobox gene GSX2
Basal ganglia are subcortical grey nuclei that play essential roles in controlling voluntary movements, cognition and emotion. While basal ganglia dysfunction is observed in many neurodegenerative or metabolic disorders, congenital malformations are rare. In particular, dysplastic basal ganglia are part of the malformative spectrum of tubulinopathies and X-linked lissencephaly with abnormal genitalia, but neurodevelopmental syndromes characterized by basal ganglia agenesis are not known to date. We ascertained two unrelated children (both female) presenting with spastic tetraparesis, severe generalized dystonia and intellectual impairment, sharing a unique brain malformation characterized by agenesis of putamina and globi pallidi, dysgenesis of the caudate nuclei, olfactory bulbs hypoplasia, and anomaly of the diencephalic-mesencephalic junction with abnormal corticospinal tract course. Whole-exome sequencing identified two novel homozygous variants, c.26C>A; p.(S9*) and c.752A>G; p.(Q251R) in the GSX2 gene, a member of the family of homeobox transcription factors, which are key regulators of embryonic development. GSX2 is highly expressed in neural progenitors of the lateral and median ganglionic eminences, two protrusions of the ventral telencephalon from which the basal ganglia and olfactory tubercles originate, where it promotes neurogenesis while negatively regulating oligodendrogenesis. The truncating variant resulted in complete loss of protein expression, while the missense variant affected a highly conserved residue of the homeobox domain, was consistently predicted as pathogenic by bioinformatic tools, resulted in reduced protein expression and caused impaired structural stability of the homeobox domain and weaker interaction with DNA according to molecular dynamic simulations. Moreover, the nuclear localization of the mutant protein in transfected cells was significantly reduced compared to the wild-type protein. Expression studies on both patients' fibroblasts demonstrated reduced expression of GSX2 itself, likely due to altered transcriptional self-regulation, as well as significant expression changes of related genes such as ASCL1 and PAX6. Whole transcriptome analysis revealed a global deregulation in genes implicated in apoptosis and immunity, two broad pathways known to be involved in brain development. This is the first report of the clinical phenotype and molecular basis associated to basal ganglia agenesis in humans
RNAseq Analyses Identify Tumor Necrosis Factor-Mediated Inflammation as a Major Abnormality in ALS Spinal Cord
ALS is a rapidly progressive, devastating neurodegenerative illness of adults that produces disabling weakness and spasticity arising from death of lower and upper motor neurons. No meaningful therapies exist to slow ALS progression, and molecular insights into pathogenesis and progression are sorely needed. In that context, we used high-depth, next generation RNA sequencing (RNAseq, Illumina) to define gene network abnormalities in RNA samples depleted of rRNA and isolated from cervical spinal cord sections of 7 ALS and 8 CTL samples. We aligned \u3e50 million 2X150 bp paired-end sequences/sample to the hg19 human genome and applied three different algorithms (Cuffdiff2, DEseq2, EdgeR) for identification of differentially expressed genes (DEGâs). Ingenuity Pathways Analysis (IPA) and Weighted Gene Co-expression Network Analysis (WGCNA) identified inflammatory processes as significantly elevated in our ALS samples, with tumor necrosis factor (TNF) found to be a major pathway regulator (IPA) and TNFα-induced protein 2 (TNFAIP2) as a major network âhubâ gene (WGCNA). Using the oPOSSUM algorithm, we analyzed transcription factors (TF) controlling expression of the nine DEG/hub genes in the ALS samples and identified TFâs involved in inflammation (NFkB, REL, NFkB1) and macrophage function (NR1H2::RXRA heterodimer). Transient expression in human iPSC-derived motor neurons of TNFAIP2 (also a DEG identified by all three algorithms) reduced cell viability and induced caspase 3/7 activation. Using high-density RNAseq, multiple algorithms for DEG identification, and an unsupervised gene co-expression network approach, we identified significant elevation of inflammatory processes in ALS spinal cord with TNF as a major regulatory molecule. Overexpression of the DEG TNFAIP2 in human motor neurons, the population most vulnerable to die in ALS, increased cell death and caspase 3/7 activation. We propose that therapies targeted to reduce inflammatory TNFα signaling may be helpful in ALS patients
- âŠ