1,925 research outputs found

    Improving Performance of QUIC in WiFi

    Get PDF
    QUIC is a new transport protocol under standardization since 2016. Initially developed by Google as an experiment, the protocol is already deployed in large-scale, thanks to its support in Chromium and Google's servers. In this paper we experimentally analyze the performance of QUIC in WiFi networks. We perform experiments using both a controlled WiFi testbed and a production WiFi mesh network. In particular, we study how QUIC interplays with MAC layer features such as IEEE 802.11 frame aggregation. We show that the current implementation of QUIC in Chromium achieves sub-optimal throughput in wireless networks. Indeed, burstiness in modern WiFi standards may improve network performance, and we show that a Bursty QUIC (BQUIC), i.e., a customized version of QUIC that is targeted to increase its burstiness, can achieve better performance in WiFi. BQUIC outperforms the current version of QUIC in WiFi, with throughput gains ranging between 20% to 30%

    A Nexafs Study of Nitric Oxide Layers Adsorbed from a nitrite Solution onto a Pt(111) Surface

    Full text link
    NO molecules adsorbed on a Pt(111) surface from dipping in an acidic nitrite solution are studied by near edge X-ray absorption fine structure spectroscopy (NEXAFS), X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM) techniques. LEED patterns and STM images show that no long range ordered structures are formed after NO adsorption on a Pt(111) surface. Although the total NO coverage is very low, spectroscopic features in N K-edge and O K-edge absorption spectra have been singled out and related to the different species induced by this preparation method. From these measurements it is concluded that the NO molecule is adsorbed trough the N atom in an upright conformation. The maximum saturation coverage is about 0.3 monolayers, and although nitric oxide is the major component, nitrite and nitrogen species are slightly co-adsorbed on the surface. The results obtained from this study are compared with those previously reported in the literature for NO adsorbed on Pt(111) under UHV conditions

    Extended Huckel theory for bandstructure, chemistry, and transport. II. Silicon

    Get PDF
    In this second paper, we develop transferable semi-empirical parameters for the technologically important material, silicon, using Extended Huckel Theory (EHT) to calculate its electronic structure. The EHT-parameters areoptimized to experimental target values of the band dispersion of bulk-silicon. We obtain a very good quantitative match to the bandstructure characteristics such as bandedges and effective masses, which are competitive with the values obtained within an sp3d5ssp^3 d^5 s^* orthogonal-tight binding model for silicon. The transferability of the parameters is investigated applying them to different physical and chemical environments by calculating the bandstructure of two reconstructed surfaces with different orientations: Si(100) (2x1) and Si(111) (2x1). The reproduced π\pi- and π\pi^*-surface bands agree in part quantitatively with DFT-GW calculations and PES/IPES experiments demonstrating their robustness to environmental changes. We further apply the silicon parameters to describe the 1D band dispersion of a unrelaxed rectangular silicon nanowire (SiNW) and demonstrate the EHT-approach of surface passivation using hydrogen. Our EHT-parameters thus provide a quantitative model of bulk-silicon and silicon-based materials such as contacts and surfaces, which are essential ingredients towards a quantitative quantum transport simulation through silicon-based heterostructures.Comment: 9 pages, 9 figure

    Long-Lived Localized Field Configurations in Small Lattices: Application to Oscillons

    Get PDF
    Long-lived localized field configurations such as breathers, oscillons, or more complex objects naturally arise in the context of a wide range of nonlinear models in different numbers of spatial dimensions. We present a numerical method, which we call the {\it adiabatic damping method}, designed to study such configurations in small lattices. Using 3-dimensional oscillons in ϕ4\phi^4 models as an example, we show that the method accurately (to a part in 10^5 or better) reproduces results obtained with static or dynamically expanding lattices, dramatically cutting down in integration time. We further present new results for 2-dimensional oscillons, whose lifetimes would be prohibitively long to study with conventional methods.Comment: LaTeX, 8 pages using RevTeX. 6 PostScript figures include

    Nuclear Tracks Morphology Study Using Raman Methodology

    Get PDF
    In this work, a new methodology for rendering profiles of etched nuclear tracks is presented, using confocal micro-Raman spectrometry instrumentation. The precise profile of etched nuclear tracks with normal and/or angular incidence of the particle can be determined in few minutes, with a great visual and numerical resolution, that means a quantitative and qualitative simultaneous chemical and morphology characterization with the Raman technique. The Raman image routine is designed to acquire at each image pixel a complete Raman spectrum. This is a mapping of the functional groups that form the polymeric structure, which may be broken by the damage caused by the incident radiation and/or the etching process

    Air entrainment through free-surface cusps

    Get PDF
    In many industrial processes, such as pouring a liquid or coating a rotating cylinder, air bubbles are entrapped inside the liquid. We propose a novel mechanism for this phenomenon, based on the instability of cusp singularities that generically form on free surfaces. The air being drawn into the narrow space inside the cusp destroys its stationary shape when the walls of the cusp come too close. Instead, a sheet emanates from the cusp's tip, through which air is entrained. Our analytical theory of this instability is confirmed by experimental observation and quantitative comparison with numerical simulations of the flow equations

    Strain-induced Evolution of Electronic Band Structures in a Twisted Graphene Bilayer

    Full text link
    Here we study the evolution of local electronic properties of a twisted graphene bilayer induced by a strain and a high curvature. The strain and curvature strongly affect the local band structures of the twisted graphene bilayer; the energy difference of the two low-energy van Hove singularities decreases with increasing the lattice deformations and the states condensed into well-defined pseudo-Landau levels, which mimic the quantization of massive Dirac fermions in a magnetic field of about 100 T, along a graphene wrinkle. The joint effect of strain and out-of-plane distortion in the graphene wrinkle also results in a valley polarization with a significant gap, i.e., the eight-fold degenerate Landau level at the charge neutrality point is splitted into two four-fold degenerate quartets polarized on each layer. These results suggest that strained graphene bilayer could be an ideal platform to realize the high-temperature zero-field quantum valley Hall effect.Comment: 4 figure

    Controlled Dynamics of Interfaces in a Vibrated Granular Layer

    Full text link
    We present experimental study of a topological excitation, {\it interface}, in a vertically vibrated layer of granular material. We show that these interfaces, separating regions of granular material oscillation with opposite phases, can be shifted and controlled by a very small amount of an additional subharmonic signal, mixed with the harmonic driving signal. The speed and the direction of interface motion depends sensitively on the phase and the amplitude of the subharmonic driving.Comment: 4 pages, 6 figures, RevTe
    corecore