1,895 research outputs found

    Revisiting the Training of Logic Models of Protein Signaling Networks with a Formal Approach based on Answer Set Programming

    Get PDF
    A fundamental question in systems biology is the construction and training to data of mathematical models. Logic formalisms have become very popular to model signaling networks because their simplicity allows us to model large systems encompassing hundreds of proteins. An approach to train (Boolean) logic models to high-throughput phospho-proteomics data was recently introduced and solved using optimization heuristics based on stochastic methods. Here we demonstrate how this problem can be solved using Answer Set Programming (ASP), a declarative problem solving paradigm, in which a problem is encoded as a logical program such that its answer sets represent solutions to the problem. ASP has significant improvements over heuristic methods in terms of efficiency and scalability, it guarantees global optimality of solutions as well as provides a complete set of solutions. We illustrate the application of ASP with in silico cases based on realistic networks and data

    Stochastic series expansion method for quantum Ising models with arbitrary interactions

    Full text link
    A quantum Monte Carlo algorithm for the transverse Ising model with arbitrary short- or long-range interactions is presented. The algorithm is based on sampling the diagonal matrix elements of the power series expansion of the density matrix (stochastic series expansion), and avoids the interaction summations necessary in conventional methods. In the case of long-range interactions, the scaling of the computation time with the system size N is therefore reduced from N^2 to Nln(N). The method is tested on a one-dimensional ferromagnet in a transverse field, with interactions decaying as 1/r^2.Comment: 9 pages, 5 figure

    On a functional satisfying a weak Palais-Smale condition

    Full text link
    In this paper we study a quasilinear elliptic problem whose functional satisfies a weak version of the well known Palais-Smale condition. An existence result is proved under general assumptions on the nonlinearities.Comment: 18 page

    Neonatal iron distribution and infection susceptibility in full term, preterm and low birthweight babies in urban Gambia: study protocol for an observational study.

    Get PDF
    Background: Neonatal infection is the third largest cause of death in children under five worldwide.  Nutritional immunity is the process by which the host innate immune system limits nutrient availability to invading organisms. Iron is an essential micronutrient for both microbial pathogens and their mammalian hosts. Changes in iron availability and distribution have significant effects on pathogen virulence and on the immune response to infection. Our previously published data shows that, during the first 24 hours of life, full-term neonates have reduced overall serum iron. Transferrin saturation decreases rapidly from 45% in cord blood to ~20% by six hours post-delivery. Methods: To study neonatal nutritional immunity and its role in neonatal susceptibility to infection, we will conduct an observational study on 300 full-term normal birth weight (FTB+NBW), 50 preterm normal birth weight (PTB+NBW), 50 preterm low birth weight (PTB+LBW) and 50 full-term low birth weight (FTB+LBW), vaginally-delivered neonates born at Kanifing General Hospital, The Gambia. We will characterize and quantify iron-related nutritional immunity during the early neonatal period and use ex vivo sentinel bacterial growth assays to assess how differences in serum iron affect bacterial growth. Blood samples will be collected from the umbilical cord (arterial and venous) and at serial time points from the neonates over the first week of life. Discussion: Currently, little is known about nutritional immunity in neonates. In this study, we will increase understanding of how nutritional immunity may protect neonates from infection during the first critical days of life by limiting the pathogenicity and virulence of neonatal sepsis causing organisms by reducing the availability of iron. Additionally, we will investigate the hypothesis that this protective mechanism may not be activated in preterm and low birth weight neonates, potentially putting these babies at an enhanced risk of neonatal infection. Trial registration: clinicaltrials.gov ( NCT03353051) 27/11/2017

    Efficacy and safety of hepcidin-based screen-and-treat approaches using two different doses versus a standard universal approach of iron supplementation in young children in rural Gambia: a double-blind randomised controlled trial.

    Get PDF
    BACKGROUND: Iron deficiency prevalence rates frequently exceed 50 % in young children in low-income countries. The World Health Organization (WHO) recommended universal supplementation of young children where anaemia rates are >40 %. However, large randomized trials have revealed that provision of iron to young children caused serious adverse effects because iron powerfully promotes microbial growth. Hepcidin - the master regulator of iron metabolism that integrates signals of infection and iron deficiency - offers the possibility of new solutions to diagnose and combat global iron deficiency. We aim to evaluate a hepcidin-screening-based iron supplementation intervention using hepcidin cut-offs designed to indicate that an individual requires iron, is safe to receive it and will absorb it. METHODS: The study is a proof-of-concept, three-arm, double blind, randomised controlled, prospective, parallel-group non-inferiority trial. Children will be randomised to receive, for a duration of 12 weeks, one of three multiple micronutrient powders (MNP) containing: A) 12 mg iron daily; B) 12 mg or 0 mg iron daily based on a weekly hepcidin screening indicating if iron can be given for the next seven days or not; C) 6 mg or 0 mg iron daily based on a weekly hepcidin screening indicating if iron can be given for the next seven days or not. The inclusion criteria are age 6-23 months, haemoglobin (Hb) concentration between 7 and 11 g/dL, z-scores for Height-for-Age, Weight-for-Age and Weight-for-Height > -3 SD and free of malaria. Hb concentration at 12 weeks will be used to test whether the screen-and-treat approaches are non-inferior to universal supplementation. Safety will be assessed using caregiver reports of infections, in vitro bacterial and P. falciparum growth assays and by determining the changes in the gut microbiota during the study period. DISCUSSION: A screen-and-treat approach using hepcidin has the potential to make iron administration safer in areas with widespread infections. If this proof-of-concept study shows promising results the development of a point-of-care diagnostic test will be the next step. TRIAL REGISTRATION: ISRCTN07210906 , 07/16/2014

    RBC barcoding allows for the study of erythrocyte population dynamics and P. falciparum merozoite invasion.

    Get PDF
    Plasmodium falciparum invasion of host erythrocytes is essential for the propagation of the blood stage of malaria infection. Additionally, the brief extracellular merozoite stage of P. falciparum represents one of the rare windows during which the parasite is directly exposed to the host immune response. Therefore, efficient invasion of the host erythrocyte is necessary not only for productive host erythrocyte infection, but also for evasion of the immune response. Host traits, such as hemoglobinopathies and differential expression of erythrocyte invasion ligands, can protect individuals from malaria by impeding parasite erythrocyte invasion. Here we combine RBC barcoding with flow cytometry to study P. falciparum invasion. This novel high-throughput method allows for the (i) direct comparison of P. falciparum invasion into different erythrocyte populations and (ii) assessment of the impact of changing erythrocyte population dynamics on P. falciparum invasion

    CNI-1493 inhibits monocyte/macrophage tumor necrosis factor by suppression of translation efficiency

    Get PDF
    Tumor necrosis factor (TNF) mediates a wide variety of disease states including septic shock, acute and chronic inflammation, and cachexia. Recently, a multivalent guanylhydrazone (CNI-1493) developed as an inhibitor of macrophage activation was shown to suppress TNF production and protect against tissue inflammation and endotoxin lethality [Bianchi, M., Ulrich, P., Bloom, O., Meistrell, M., Zimmerman, G. A., Schmidtmayerova, H., Bukrinsky, M., Donnelley, T., Bucala, R., Sherry, B., Manogue, K. R., Tortolani, A. J., Cerami, A. & Tracey, K. J. (1995) Mol. Med. 1, 254-266, and Bianchi, M., Bloom, O., Raabe, T., Cohen, P. S., Chesney, J., Sherry, B., Schmidtmayerova, H., Zhang, X., Bukrinsky, M., Ulrich, P., Cerami, A. & Tracey, J. (1996) J. Exp. Med., in press]. We have now elucidated the mechanism by which CNI-1493 inhibits macrophage TNF synthesis and show here that it acts through suppression of TNF translation efficiency. CNI-1493 blocked neither the lipopolysaccharide (LPS)-induced increases in the expression of TNF mRNA nor the translocation of nuclear factor NF-kappa B to the nucleus in macrophages activated by 15 min of LPS stimulation, indicating that CNI-1493 does not interfere with early NF-kappa B-mediated transcriptional regulation of TNF. However, synthesis of the 26-kDa membrane form of TNF was effectively blocked by CNI-1493. Further evidence for the translational suppression of TNF is given by experiments using chloram-phenicol acetyltransferase (CAT) constructs containing elements of the TNF gene that are involved in TNF translational regulation. Both the 5' and 3' untranslated regions of the TNF gene were required to elicit maximal translational suppression by CNI-1493. Identification of the molecular target through which CNI-1493 inhibits TNF translation should provide insight into the regulation of macrophage activation and mechanisms of inflammation

    Hemoglobinopathies: Slicing the Gordian Knot of Plasmodium falciparum Malaria Pathogenesis

    Get PDF
    Plasmodium falciparum malaria kills over 500,000 children every year and has been a scourge of humans for millennia. Owing to the co-evolution of humans and P. falciparum parasites, the human genome is imprinted with polymorphisms that not only confer innate resistance to falciparum malaria, but also cause hemoglobinopathies. These genetic traits—including hemoglobin S (HbS), hemoglobin C (HbC), and α-thalassemia—are the most common monogenic human disorders and can confer remarkable degrees of protection from severe, life-threatening falciparum malaria in African children: the risk is reduced 70% by homozygous HbC and 90% by heterozygous HbS (sickle-cell trait). Importantly, this protection is principally present for severe disease and largely absent for P. falciparum infection, suggesting that these hemoglobinopathies specifically neutralize the parasite's in vivo mechanisms of pathogenesis. These hemoglobin variants thus represent a “natural experiment” to identify the cellular and molecular mechanisms by which P. falciparum produces clinical morbidity, which remain partially obscured due to the complexity of interactions between this parasite and its human host. Multiple lines of evidence support a restriction of parasite growth by various hemoglobinopathies, and recent data suggest this phenomenon may result from host microRNA interference with parasite metabolism. Multiple hemoglobinopathies mitigate the pathogenic potential of parasites by interfering with the export of P. falciparum erythrocyte membrane protein 1 (PfEMP1) to the surface of the host red blood cell. Few studies have investigated their effects upon the activation of the innate and adaptive immune systems, although recent murine studies suggest a role for heme oxygenase-1 in protection. Ultimately, the identification of mechanisms of protection and pathogenesis can inform future therapeutics and preventive measures. Hemoglobinopathies slice the “Gordian knot” of host and parasite interactions to confer malaria protection, and offer a translational model to identify the most critical mechanisms of P. falciparum pathogenesis

    Artemisinin Activity in Red Blood Cells from Anemic Children.

    Get PDF
    Artemisinin combination therapies are the current frontline therapy for falciparum malaria. Artemisinin is activated by heme iron, and the consequent production of reactive oxygen species and carbon-centered radicals results in rapid parasite clearance. Red blood cells (RBCs) from anemic iron-deficient individuals have decreased levels of heme, and such deficiencies are highly prevalent among children and pregnant women in malaria-endemic countries. We, therefore, investigated the possibility that host anemia could impair artemisinin activity and alter the drug sensitivity of artemisinin-resistant strains of Plasmodium falciparum. We collected RBCs from anemic (n = 35) and nonanemic (n = 11) Gambian children between the ages of 2 and 24 months. Parasites grown in RBCs from both groups were assessed in vitro using the ring-stage survival assay with artemisinin-resistant and artemisinin-sensitive strains of P. falciparum. No differences were found in artemisinin sensitivity (P > 0.05), and there was no correlation between artemisinin activity and host hemoglobin levels. Standard antimalarial drug activity assays for representatives of the major classes of antimalarial drugs found no differences in the IC50 values against P. falciparum between anemic and nonanemic RBCs. We conclude that host anemia does not influence artemisinin activity
    • …
    corecore