9 research outputs found

    The C-Band All-Sky Survey (C-BASS): New Constraints on the Integrated Radio Spectrum of M 31

    Full text link
    The Andromeda galaxy (M31) is our closest neighbouring spiral galaxy, making it an ideal target for studying the physics of the interstellar medium in a galaxy very similar to our own. Using new observations of M31 at 4.76GHz by the C-Band All-Sky Survey (C-BASS), and all available radio data at 11^\circ resolution, we produce the integrated spectrum and put new constraints on the synchrotron spectral index and anomalous microwave emission (AME) from M31. We use aperture photometry and spectral modelling to fit for the integrated spectrum of M31, and subtract a comprehensive model of nearby background radio sources. The AME in M31 is detected at 3σ3\sigma significance with a peak near 30GHz and flux density 0.27±0.090.27\pm0.09Jy. The synchrotron spectral index of M31 is flatter than our own Galaxy at α=0.66±0.03\alpha = -0.66 \pm 0.03 with no strong evidence of spectral curvature. The emissivity of AME, averaged over the total emission from M31 is lower than typical AME sources in our Galaxy, implying that AME is not uniformly distributed throughout M31 and instead is likely confined to sub-regions -- this will need to be confirmed using future higher resolution observations around 20--30GHz.Comment: 16 pages, 6 figures, submitted to MNRA

    Detection of Spectral Variations of Anomalous Microwave Emission with QUIJOTE and C-BASS

    Get PDF
    Anomalous Microwave Emission (AME) is a significant component of Galactic diffuse emission in the frequency range 1010-6060\,GHz and a new window into the properties of sub-nanometre-sized grains in the interstellar medium. We investigate the morphology of AME in the 10\approx10^{\circ} diameter λ\lambda Orionis ring by combining intensity data from the QUIJOTE experiment at 1111, 1313, 1717 and 1919\,GHz and the C-Band All Sky Survey (C-BASS) at 4.764.76\,GHz, together with 19 ancillary datasets between 1.421.42 and 30003000\,GHz. Maps of physical parameters at 11^{\circ} resolution are produced through Markov Chain Monte Carlo (MCMC) fits of spectral energy distributions (SEDs), approximating the AME component with a log-normal distribution. AME is detected in excess of 20σ20\,\sigma at degree-scales around the entirety of the ring along photodissociation regions (PDRs), with three primary bright regions containing dark clouds. A radial decrease is observed in the AME peak frequency from 35\approx35\,GHz near the free-free region to 21\approx21\,GHz in the outer regions of the ring, which is the first detection of AME spectral variations across a single region. A strong correlation between AME peak frequency, emission measure and dust temperature is an indication for the dependence of the AME peak frequency on the local radiation field. The AME amplitude normalised by the optical depth is also strongly correlated with the radiation field, giving an overall picture consistent with spinning dust where the local radiation field plays a key role.Comment: 19 pages, 7 figures, accepted for publication by MNRA

    The C-Band All-Sky Survey: total intensity point-source detection over the northern sky

    Get PDF
    We present a point-source detection algorithm that employs the second-order Spherical Mexican Hat wavelet filter (SMHW2), and use it on C-Band All-Sky Survey (C-BASS) northern intensity data to produce a catalogue of point sources. This catalogue allows us to cross-check the C-BASS flux-density scale against existing source surveys, and provides the basis for a source mask that will be used in subsequent C-BASS and cosmic microwave background (CMB) analyses. The SMHW2 allows us to filter the entire sky at once, avoiding complications from edge effects arising when filtering small sky patches. The algorithm is validated against a set of Monte Carlo simulations, consisting of diffuse emission, instrumental noise, and various point-source populations. The simulated source populations are successfully recovered. The SMHW2 detection algorithm is used to produce a 4.76GHz northern sky source catalogue in total intensity, containing 1784 sources and covering declinations δ ≥ −10°. The C-BASS catalogue is matched with the Green Bank 6 cm (GB6) and Parkes-MIT-NRAO (PMN) catalogues over their areas of common sky coverage. From this we estimate the 90 per cent completeness level to be approximately 610mJy⁠, with a corresponding reliability of 98 per cent, when masking the brightest 30 per cent of the diffuse emission in the C-BASS northern sky map. We find the C-BASS and GB6 flux-density scales to be consistent with one another to within approximately 4 per cent

    COMAP Early Science: VI. A First Look at the COMAP Galactic Plane Survey

    Full text link
    We present early results from the COMAP Galactic Plane Survey conducted between June 2019 and April 2021, spanning 20<<4020^\circ<\ell<40^\circ in Galactic longitude and |b|<1.\!\!^{\circ}5 in Galactic latitude with an angular resolution of 4.54.5^{\prime}. The full survey will span 20\ell \sim 20^{\circ}- 220220^{\circ} and will be the first large-scale radio continuum survey at 3030 GHz with sub-degree resolution. We present initial results from the first part of the survey, including diffuse emission and spectral energy distributions (SEDs) of HII regions and supernova remnants. Using low and high frequency surveys to constrain free-free and thermal dust emission contributions, we find evidence of excess flux density at 3030\,GHz in six regions that we interpret as anomalous microwave emission. Furthermore we model UCHII contributions using data from the 55\,GHz CORNISH catalogue and reject this as the cause of the 3030\,GHz excess. Six known supernova remnants (SNR) are detected at 3030\,GHz, and we measure spectral indices consistent with the literature or show evidence of steepening. The flux density of the SNR W44 at 3030\,GHz is consistent with a power-law extrapolation from lower frequencies with no indication of spectral steepening in contrast with recent results from the Sardinia Radio Telescope. We also extract five hydrogen radio recombination lines to map the warm ionized gas, which can be used to estimate electron temperatures or to constrain continuum free-free emission. The full COMAP Galactic plane survey, to be released in 2023/2024, will be an invaluable resource for Galactic astrophysics.Comment: Paper 6 of 7 in series. 28 pages, 10 figures, submitted to Ap

    The C-Band All-Sky Survey (C-BASS): total intensity point source detection over the northern sky

    No full text
    We present a point source detection algorithm that employs the second order Spherical Mexican Hat Wavelet filter (SMHW2), and use it on C-BASS northern intensity data to produce a catalogue of point sources. The SMHW2 allows us to filter the entire sky at once, avoiding complications from edge effects arising when filtering small sky patches. The algorithm is validated against a set of Monte Carlo simulations, consisting of diffuse emission, instrumental noise, and various point source populations. The simulated source populations are successfully recovered. The SMHW2 detection algorithm is used to produce a 4.76GHz4.76\,\mathrm{GHz} northern sky source catalogue in total intensity, containing 1729 sources and covering declinations δ10\delta\geq-10^{\circ}. The C-BASS catalogue is matched with the GB6 and PMN catalogues over their common declinations. From this we estimate the 90%90\% completeness level to be approximately 630mJy630\,\mathrm{mJy}, with a corresponding reliability of 95%95\%, when applying a Galactic mask covering 20%20\% of the sky. We find the C-BASS and GB6/PMN flux density scales to be consistent with one another to within 3%3\%. The absolute positional offsets of C-BASS sources from matched GB6/PMN sources peak at approximately 3.5arcmin3.5\,\mathrm{arcmin}

    The C-Band All-Sky Survey (C-BASS): Template Fitting of Diffuse Galactic Microwave Emission in the Northern Sky

    Full text link
    The C-Band All-Sky Survey (C-BASS) has observed the Galaxy at 4.76GHz with an angular resolution of 0.730.73^\circ full-width half-maximum, and detected Galactic synchrotron emission with high signal-to-noise ratio over the entire northern sky (δ>15\delta > -15^{\circ}). We present the results of a spatial correlation analysis of Galactic foregrounds at mid-to-high (b>10b > 10^\circ) Galactic latitudes using a preliminary version of the C-BASS intensity map. We jointly fit for synchrotron, dust, and free-free components between 2020 and 10001000GHz and look for differences in the Galactic synchrotron spectrum, and the emissivity of anomalous microwave emission (AME) when using either the C-BASS map or the 408MHz all-sky map to trace synchrotron emission. We find marginal evidence for a steepening (\left = -0.06\pm0.02) of the Galactic synchrotron spectrum at high frequencies resulting in a mean spectral index of \left = -3.10\pm0.02 over 4.7622.84.76-22.8GHz. Further, we find that the synchrotron emission can be well modelled by a single power-law up to a few tens of GHz. Due to this, we find that the AME emissivity is not sensitive to changing the synchrotron tracer from the 408MHz map to the 4.76GHz map. We interpret this as strong evidence for the origin of AME being spinning dust emission.Comment: 20 pages, 13 figures, published with MNRA

    QUIJOTE scientific results - IV. A northern sky survey in intensity and polarization at 10-20 GHz with the multifrequency instrument

    No full text
    International audienceWe present QUIJOTE intensity and polarization maps in four frequency bands centred around 11, 13, 17, and 19 GHz, and covering approximately 29 000 deg2, including most of the northern sky region. These maps result from 9000 h of observations taken between May 2013 and June 2018 with the first QUIJOTE multifrequency instrument (MFI), and have angular resolutions of around 1°, and sensitivities in polarization within the range 35-40 µK per 1° beam, being a factor ~2-4 worse in intensity. We discuss the data processing pipeline employed, and the basic characteristics of the maps in terms of real space statistics and angular power spectra. A number of validation tests have been applied to characterize the accuracy of the calibration and the residual level of systematic effects, finding a conservative overall calibration uncertainty of 5 per cent. We also discuss flux densities for four bright celestial sources (Tau A, Cas A, Cyg A, and 3C274), which are often used as calibrators at microwave frequencies. The polarization signal in our maps is dominated by synchrotron emission. The distribution of spectral index values between the 11 GHz and WMAP 23 GHz map peaks at β = -3.09 with a standard deviation of 0.14. The measured BB/EE ratio at scales of ℓ = 80 is 0.26 ± 0.07 for a Galactic cut |b| > 10°. We find a positive TE correlation for 11 GHz at large angular scales (ℓ ≲ 50), while the EB and TB signals are consistent with zero in the multipole range 30 ≲ ℓ ≲ 150. The maps discussed in this paper are publicly available
    corecore