420 research outputs found

    Embedding Population Dynamics Models in Inference

    Full text link
    Increasing pressures on the environment are generating an ever-increasing need to manage animal and plant populations sustainably, and to protect and rebuild endangered populations. Effective management requires reliable mathematical models, so that the effects of management action can be predicted, and the uncertainty in these predictions quantified. These models must be able to predict the response of populations to anthropogenic change, while handling the major sources of uncertainty. We describe a simple ``building block'' approach to formulating discrete-time models. We show how to estimate the parameters of such models from time series of data, and how to quantify uncertainty in those estimates and in numbers of individuals of different types in populations, using computer-intensive Bayesian methods. We also discuss advantages and pitfalls of the approach, and give an example using the British grey seal population.Comment: Published at http://dx.doi.org/10.1214/088342306000000673 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Influence of the physical environment and conspecific aggression on the spatial arrangement of breeding grey seals

    Get PDF
    Understanding the habitat requirements of a species for breeding is essential for its conservation, particularly if the availability of suitable habitat is a limiting factor for population growth. This is postulated to be the case for grey seals, one of the more abundant marine apex predators in northern European waters. In common with similar studies that have investigated the habitat preferences of breeding grey seals, we use abiotic (topographical, climatological) attributes but, unlike previous work, we also incorporate behavioural variables, particularly the occurrence of aggressive interactions between females and the presence of neighbouring seals. We used two Generalized Additive Models (GAM) in a sequential and iterative fashion. The first model links the occurrence of aggression at particular points in the colony to local topography derived from a Geographical Information System (GIS), presence of neighbouring seal pups and the day of the breeding season. The output of this GAM is used as one of the explanatory variables in a GAM of daily variation in the spatial distribution of births. Although proximity of a birth site to a water source and the presence of neighbouring seal pups both had significant influences on the distribution of newborn pups over time and space, at the scale of the study site it was found that simple rules could predict pup distribution more efficiently than a complex individual-based simulation model. (c) 2007 Elsevier B.V. All rights reserved.PostprintPeer reviewe

    The challenges of analyzing behavioral response study data : an overview of the MOCHA (Multi-study OCean acoustics Human effects Analysis) project

    Get PDF
    Date of Acceptance:This paper describes the MOCHA project which aims to develop novel approaches for the analysis of data collected during Behavioral Response Studies (BRSs). BRSs are experiments aimed at directly quantifying the effects of controlled dosages of natural or anthropogenic stimuli (typically sound) on marine mammal behavior. These experiments typically result in low sample size, relative to variability, and so we are looking at a number of studies in combination to maximize the gain from each one. We describe a suite of analytical tools applied to BRS data on beaked whales, including a simulation study aimed at informing future experimental design.Postprin

    Using density surface models to estimate spatio-temporal changes in population densities and trend

    Get PDF
    Funding – Centre for Research into Ecological and Environmental Modelling, University of St Andrews and U.S. Geological Survey provided funding for this analysis through a studentship to RJC.Precise measures of population abundance and trend are needed for species conservation; these are most difficult to obtain for rare and rapidly changing populations. We compare uncertainty in densities estimated from spatio–temporal models with that from standard design‐based methods. Spatio–temporal models allow us to target priority areas where, and at times when, a population may most benefit. Generalised additive models were fitted to a 31‐year time series of point‐transect surveys of an endangered Hawaiian forest bird, the Hawai'i ‘ākepa Loxops coccineus. This allowed us to estimate bird densities over space and time. We used two methods to quantify uncertainty in density estimates from the spatio–temporal model: the delta method (which assumes independence between detection and distribution parameters) and a variance propagation method. With the delta method we observed a 52% decrease in the width of the design‐based 95% confidence interval (CI), while we observed a 37% decrease in CI width when propagating the variance. We mapped bird densities as they changed across space and time, allowing managers to evaluate management actions. Integrating detection function modelling with spatio–temporal modelling exploits survey data more efficiently by producing finer‐grained abundance estimates than are possible with design‐based methods as well as producing more precise abundance estimates. Model‐based approaches require switching from making assumptions about the survey design to assumptions about bird distribution. Such a switch warrants carefully considered. In this case the model‐based approach benefits conservation planning through improved management efficiency and reduced costs by taking into account both spatial shifts and temporal changes in population abundance and distribution.Publisher PDFPeer reviewe

    An integrative modelling framework for passive acoustic telemetry

    Get PDF
    The work was supported by a PhD Studentship at the University of St Andrews funded by NatureScot, via the Marine Alliance for Science and Technology for Scotland (MASTS), and the Centre for Research into Ecological and Environmental Modelling. Data were made available through the Movement Ecology of Flapper Skate project funded by NatureScot (project 015960) and Marine Scotland (projects SP004 and SP02B0). Jane Dodd, Ronnie Campbell, Roger Eaton, Francis Neat and Dmitry Aleynik supported this project. MASTS and Shark Guardian provided additional funding. MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions.Passive acoustic telemetry is widely used to study the movements of aquatic animals. However, a holistic, mechanistic modelling framework that permits the reconstruction of fine-scale movements and emergent patterns of space use from detections at receivers remains lacking. Here, we introduce an integrative modelling framework that recapitulates the movement and detection processes that generate detections to reconstruct fine-scale movements and patterns of space use. This framework is supported by a new family of algorithms designed for detection and depth observations and can be flexibly extended to incorporate other data types. Using simulation, we illustrate applications of our framework and evaluate algorithm utility and sensitivity in different settings. As a case study, we analyse movement data collected from the Critically Endangered flapper skate (Dipturus intermedius) in Scotland. We show that our methods can be used to reconstruct fine-scale movement paths, patterns of space use and support habitat preference analyses. For reconstructing patterns of space use, simulations show that the methods are consistently more instructive than the most widely used alternative approach (the mean-position algorithm), particularly in clustered receiver arrays. For flapper skate, the reconstruction of movements reveals responses to disturbance, fine-scale spatial partitioning and patterns of space use with significant implications for marine management. We conclude that this framework represents a widely applicable methodological advance with applications to studies of pelagic, demersal and benthic species across multiple spatiotemporal scales.Publisher PDFPeer reviewe

    Environmental cycles and individual variation in the vertical movements of a benthic elasmobranch

    Get PDF
    This research was supported by a PhD Studentship at the University of St Andrews, jointly funded by NatureScot via the Marine Alliance for Science and Technology for Scotland (MASTS), and the Centre for Research into Ecological and Environmental Modelling. The data were collected as part of research funded by NatureScot (project 015960) and Marine Scotland (projects SP004 and SP02B0) and the Movement Ecology of Flapper Skate (MEFS) project funded by the same organisations. Additional funding was provided from MASTS, in the form of a Small Research Grant, and Shark Guardian. MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions.Trends in depth and vertical activity reflect the behaviour, habitat use and habitat preferences of marine organisms. However, among elasmobranchs, research has focused heavily on pelagic sharks, while the vertical movements of benthic elasmobranchs, such as skate (Rajidae), remain understudied. In this study, the vertical movements of the Critically Endangered flapper skate (Dipturus intermedius) were investigated using archival depth data collected at 2 min intervals from 21 individuals off the west coast of Scotland (56.5°N, −5.5°W) in 2016–17. Depth records comprised nearly four million observations and included eight time series longer than 1 year, forming one of the most comprehensive datasets collected on the movement of any skate to date. Additive modelling and functional data analysis were used to investigate vertical movements in relation to environmental cycles and individual characteristics. Vertical movements were dominated by individual variation but included prolonged periods of limited activity and more extensive movements that were associated with tidal, diel, lunar and seasonal cycles. Diel patterns were strongest, with irregular but frequent movements into shallower water at night, especially in autumn and winter. This research strengthens the evidence for vertical movements in relation to environmental cycles in benthic species and demonstrates a widely applicable flexible regression framework for movement research that recognises the importance of both individual-specific and group-level variation.Publisher PDFPeer reviewe

    Fitting models of multiple hypotheses to partial population data: investigating the causes of cycles in red grouse

    Get PDF
    There are two postulated causes for the observed periodic fluctuations (cycles) in red grouse (Lagopus lagopus scoticus). The first involves interaction with the parasitic nematode Trichostrongylus tenuis. The second invokes delayed regulation through the effect of male aggressiveness on territoriality. Empirical evidence exists to support both hypotheses, and each hypothesis has been modeled deterministically. However, little effort has gone into looking at the combined effects of the two mechanisms or formally fitting the corresponding models to field data. Here we present a model for red grouse dynamics that includes both parasites and territoriality. To explore the single and combined hypotheses, we specify three versions of this model and fit them to data using Bayesian state‐space modeling, a method that allows statistical inference to be performed on mechanistic models such as ours. Output from the three models is then examined to determine their goodness of fit and the biological plausibility of the parameter values required by each to fit the population data. While all three models are capable of emulating the observed cyclic dynamics, only the model including both aggression and parasites does so under consistently realistic parameter values, providing theoretical support for the idea that both mechanisms shape red grouse cycles
    corecore