46 research outputs found
The conserved C-terminus of the PcrA/UvrD helicase interacts directly with RNA polymerase
Copyright: © 2013 Gwynn et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This work was supported by a Wellcome Trust project grant to MD (Reference: 077368), an ERC starting grant to MD (Acronym: SM-DNA-REPAIR) and a BBSRC project grant to PM, NS and MD (Reference: BB/I003142/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD
Differential Requirements of Two recA Mutants for Constitutive SOS Expression in Escherichia coli K-12
Background Repairing DNA damage begins with its detection and is often followed by elicitation of a cellular response. In E. coli, RecA polymerizes on ssDNA produced after DNA damage and induces the SOS Response. The RecA-DNA filament is an allosteric effector of LexA auto-proteolysis. LexA is the repressor of the SOS Response. Not all RecA-DNA filaments, however, lead to an SOS Response. Certain recA mutants express the SOS Response (recAC) in the absence of external DNA damage in log phase cells. Methodology/Principal Findings Genetic analysis of two recAC mutants was used to determine the mechanism of constitutive SOS (SOSC) expression in a population of log phase cells using fluorescence of single cells carrying an SOS reporter system (sulAp-gfp). SOSC expression in recA4142 mutants was dependent on its initial level of transcription, recBCD, recFOR, recX, dinI, xthA and the type of medium in which the cells were grown. SOSC expression in recA730 mutants was affected by none of the mutations or conditions tested above. Conclusions/Significance It is concluded that not all recAC alleles cause SOSC expression by the same mechanism. It is hypothesized that RecA4142 is loaded on to a double-strand end of DNA and that the RecA filament is stabilized by the presence of DinI and destabilized by RecX. RecFOR regulate the activity of RecX to destabilize the RecA filament. RecA730 causes SOSC expression by binding to ssDNA in a mechanism yet to be determined
TEX264 coordinates p97- and SPRTN-mediated resolution of topoisomerase 1-DNA adducts
Eukaryotic topoisomerase 1 (TOP1) regulates DNA topology to ensure efficient DNA replication and transcription. TOP1 is also a major driver of endogenous genome instability, particularly when its catalytic intermediate—a covalent TOP1-DNA adduct known as a TOP1 cleavage complex (TOP1cc)—is stabilised. TOP1ccs are highly cytotoxic and a failure to resolve them underlies the pathology of neurological disorders but is also exploited in cancer therapy where TOP1ccs are the target of widely used frontline anti-cancer drugs. A critical enzyme for TOP1cc resolution is the tyrosyl-DNA phosphodiesterase (TDP1), which hydrolyses the bond that links a tyrosine in the active site of TOP1 to a 3’ phosphate group on a single-stranded (ss)DNA break. However, TDP1 can only process small peptide fragments from ssDNA ends, raising the question of how the ~90 kDa TOP1 protein is processed upstream of TDP1. Here we find that TEX264 fulfils this role by forming a complex with the p97 ATPase and the SPRTN metalloprotease. We show that TEX264 recognises both unmodified and SUMO1-modifed TOP1 and initiates TOP1cc repair by recruiting p97 and SPRTN. TEX264 localises to the nuclear periphery, associates with DNA replication forks, and counteracts TOP1ccs during DNA replication. Altogether, our study elucidates the existence of a specialised repair complex required for upstream proteolysis of TOP1ccs and their subsequent resolution
Role of β-Catenin in Post-Meiotic Male Germ Cell Differentiation
Though roles of β-catenin signaling during testis development have been well established, relatively little is known about its role in postnatal testicular physiology. Even less is known about its role in post-meiotic germ cell development and differentiation. Here, we report that β-catenin is highly expressed in post-meiotic germ cells and plays an important role during spermiogenesis in mice. Spermatid-specific deletion of β-catenin resulted in significantly reduced sperm count, increased germ cell apoptosis and impaired fertility. In addition, ultrastructural studies show that the loss of β-catenin in post-meiotic germ cells led to acrosomal defects, anomalous release of immature spermatids and disruption of adherens junctions between Sertoli cells and elongating spermatids (apical ectoplasmic specialization; ES). These defects are likely due to altered expression of several genes reportedly involved in Sertoli cell-germ cell adhesion and germ cell differentiation, as revealed by gene expression analysis. Taken together, our results suggest that β-catenin is an important molecular link that integrates Sertoli cell-germ cell adhesion with the signaling events essential for post-meiotic germ cell development and maturation. Since β-catenin is also highly expressed in the Sertoli cells, we propose that binding of germ cell β-catenin complex to β-catenin complex on Sertoli cell at the apical ES surface triggers a signaling cascade that regulates post-meiotic germ cell differentiation
Valorisation of agricultural biomass‑ash with CO2
This work is part of a study of different types of plant-based biomass to elucidate their capacity for valorisation via a managed carbonation step involving gaseous carbon dioxide (co2). the perspectives for broader biomass waste valorisation was reviewed, followed by a proposed closed‑loop process for the valorisation of wood in earlier works. the present work newly focusses on combining agricultural biomass with mineralised co2. Here, the reactivity of selected agricultural biomass ashes with co2 and their ability to be bound by mineralised carbonate in a hardened product is examined. three categories of agricultural biomass residues, including shell, fibre and soft peel, were incinerated at 900 ± 25 °C. The biomass ashes were moistened (10% w/w) and moulded into cylindrical samples and exposed to 100% CO2 gas at 50% RH for 24 h, during which they cemented into hardened monolithic products. the calcia in ashes formed a negative relationship with ash yield and the microstructure of the carbonate‑cementing phase was distinct and related to the particular biomass feedstock. this work shows that in common with woody biomass residues, carbonated agricultural biomass ash‑based monoliths have potential as novel low‑carbon construction products
Recommended from our members
UvrD limits the number and intensities of RecA-Green fluorescent protein structures in Escherichia coli K-12
2915-292
Recommended from our members
UvrD303, a Hyperhelicase Mutant That Antagonizes RecA-Dependent SOS Expression by a Mechanism That Depends on Its C Terminus
1429-143
Recommended from our members
XthA (Exonuclease III) regulates loading of RecA onto DNA substrates in log phase Escherichia coli cells
88-10