80 research outputs found

    Synthesis of highly regioregular poly[3-(4-alkoxyphenyl)-thiophene]s by oxidative catalysis using copper complexes

    Get PDF
    A novel, easy, and cost-effective synthetic procedure is reported for the production of very highly regioregular poly[3-(4-alkoxyphenyl)thiophene]s by means of oxidative coupling. Four copper complexes were synthesized and used as catalysts to obtain polymers with higher regioregularity compared to the previous oxidative coupling methodologies reported in the literature and similar to that obtained by McCullough and Rieke methods in the synthesis of poly-3-alkylthiophenes. The regioregularity of the synthesized polymers was investigated by UV-Visible characterization on polymer thin films and 1H NMR analysis. The remarkable potentialities of these polymers have emerged from field-effect transistor mobility measurements operated on devices with bottom-contact configuration and hexamethyldisilazane-treated SiO 2 gate dielectric, showing a well-defined p-type field-effect response and maximum mobility values in air higher than 10-4 cm 2 V-1 s-1. © 2013 Wiley Periodicals, Inc

    The conserved C-terminus of the PcrA/UvrD helicase interacts directly with RNA polymerase

    Get PDF
    Copyright: © 2013 Gwynn et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This work was supported by a Wellcome Trust project grant to MD (Reference: 077368), an ERC starting grant to MD (Acronym: SM-DNA-REPAIR) and a BBSRC project grant to PM, NS and MD (Reference: BB/I003142/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Differential Requirements of Two recA Mutants for Constitutive SOS Expression in Escherichia coli K-12

    Get PDF
    Background Repairing DNA damage begins with its detection and is often followed by elicitation of a cellular response. In E. coli, RecA polymerizes on ssDNA produced after DNA damage and induces the SOS Response. The RecA-DNA filament is an allosteric effector of LexA auto-proteolysis. LexA is the repressor of the SOS Response. Not all RecA-DNA filaments, however, lead to an SOS Response. Certain recA mutants express the SOS Response (recAC) in the absence of external DNA damage in log phase cells. Methodology/Principal Findings Genetic analysis of two recAC mutants was used to determine the mechanism of constitutive SOS (SOSC) expression in a population of log phase cells using fluorescence of single cells carrying an SOS reporter system (sulAp-gfp). SOSC expression in recA4142 mutants was dependent on its initial level of transcription, recBCD, recFOR, recX, dinI, xthA and the type of medium in which the cells were grown. SOSC expression in recA730 mutants was affected by none of the mutations or conditions tested above. Conclusions/Significance It is concluded that not all recAC alleles cause SOSC expression by the same mechanism. It is hypothesized that RecA4142 is loaded on to a double-strand end of DNA and that the RecA filament is stabilized by the presence of DinI and destabilized by RecX. RecFOR regulate the activity of RecX to destabilize the RecA filament. RecA730 causes SOSC expression by binding to ssDNA in a mechanism yet to be determined

    Bromodomain inhibition of the transcriptional coactivators CBP/EP300 as a therapeutic strategy to target the IRF4 network in multiple myeloma

    Get PDF
    Abstract Pharmacological inhibition of chromatin co-regulatory factors represents a clinically validated strategy to modulate oncogenic signaling through selective attenuation of gene expression. Here, we demonstrate that CBP/EP300 bromodomain inhibition preferentially abrogates the viability of multiple myeloma cell lines. Selective targeting of multiple myeloma cell lines through CBP/EP300 bromodomain inhibition is the result of direct transcriptional suppression of the lymphocyte-specific transcription factor IRF4, which is essential for the viability of myeloma cells, and the concomitant repression of the IRF4 target gene c-MYC. Ectopic expression of either IRF4 or MYC antagonizes the phenotypic and transcriptional effects of CBP/EP300 bromodomain inhibition, highlighting the IRF4/MYC axis as a key component of its mechanism of action. These findings suggest that CBP/EP300 bromodomain inhibition represents a viable therapeutic strategy for targeting multiple myeloma and other lymphoid malignancies dependent on the IRF4 network

    Valorisation of agricultural biomass‑ash with CO2

    Get PDF
    This work is part of a study of different types of plant-based biomass to elucidate their capacity for valorisation via a managed carbonation step involving gaseous carbon dioxide (co2). the perspectives for broader biomass waste valorisation was reviewed, followed by a proposed closed‑loop process for the valorisation of wood in earlier works. the present work newly focusses on combining agricultural biomass with mineralised co2. Here, the reactivity of selected agricultural biomass ashes with co2 and their ability to be bound by mineralised carbonate in a hardened product is examined. three categories of agricultural biomass residues, including shell, fibre and soft peel, were incinerated at 900 ± 25 °C. The biomass ashes were moistened (10% w/w) and moulded into cylindrical samples and exposed to 100% CO2 gas at 50% RH for 24 h, during which they cemented into hardened monolithic products. the calcia in ashes formed a negative relationship with ash yield and the microstructure of the carbonate‑cementing phase was distinct and related to the particular biomass feedstock. this work shows that in common with woody biomass residues, carbonated agricultural biomass ash‑based monoliths have potential as novel low‑carbon construction products

    Molecular hyperpolarizabilities of push–pull chromophores: A comparison between theoretical and experimental results

    No full text
    Electric dipole moments and static first order hyperpolarizabilities of two push–pull molecules with an extended p electron systems have been evaluated at different computational levels and compared with the results of electro-optical absorption measurements, based on the two state model. Calculations show that: (i) the dipole moments of such elongated systems depend significantly on conformation, a thorough conformational search is necessary for a meaningful comparison between theoretical and experimental results; (ii) DFT methods, in particular CAM-B3LYP and M05-2X, yield dipole moments which compare well with those obtained by post Hartree–Fock methods (MP2) and by EOA measurements; (iii) theoretical first order hyperpolarizabilities are largely underestimated, both by MP2 and DFT methods, possibly because of the failure of two state model used in electro-optical measurements

    Redox and Emission Properties of Triazolo-Triazole Derivatives and Copper(II) Complexes

    No full text
    The hydrolysis reactions of triazolo–triazole derivatives, which are characterized by the presence of substituents of different electronic character (electron donor or acceptor) on the bicycle, in 0.5 mol·dm−3 NaCl as ionic medium, at 25 °C, have been investigated. Acid–base titrations, volumetric or coulometric, have been performed. The pH range investigated is 0.3–12. UV–vis spectra recorded at various pH values showed that the substitution pattern at the bicycle strongly affects the absorption and emission properties of the triazoles. Current/voltage curves recorded at various pH values also indicate that only a cationic monoprotonated species undergoes irreversible reduction at potential values spanning the range − 0.9 V to − 1.3 V (vs. Ag/AgCl), depending on the pH and on the substituent’s nature. Particularly, on the fused-ring N-rich bicycle, with pentafluorophenyl as electron withdrawing group, reduction takes place at a potential of 0.05 V higher than the analogue with aminophenyl electron donor group. The mononuclear complexes formation between Cu(II) and a triazolo–triazole compound has been also highlighted by UV–vis spectra and current/voltage curves recorded at 0.3 < pH < 6
    corecore