165 research outputs found
Molecular analysis of hepatitis C virus infection in Bulgarian injecting drug users
Intravenous drug users constitute a group at risk for hepatitis C virus (HCV) infection. Today, no data are available on the molecular epidemiology of HCV in Bulgaria despite the fact that in recent years the incidence of acute hepatitis C infection among Bulgarian intravenous drug users increased sixfold and about 2/3 of them developed a chronic infection. The aim of this study was to determine the circulation of hepatitis C genotypes among drug users and to study the evolution and transmission history of the virus by molecular clock and Bayesian methods, respectively. Sequencing of NS5B gene showed that the genotype 3a was the most prevalent type among intravenous drug users. In the Bayesian tree, the 3a subtypes grouped in one main clade with one small cluster well statistically supported. The root of the tree was dated back to the year 1836, and the main clade from Bulgaria was dated 1960. The effective number of infections remained constant until about years 1950s, growing exponentially from the 1960s to the 1990s, reaching a plateau in the years 2000. The not significant intermixing with isolates from other countries may suggest a segregated circulation of the epidemic between 1940s and 1980s. The plateau reached by the epidemic in the early 2000s may indicate the partial success of the new preventive policies adopted in Bulgaria. J. Med. Virol. 83:1565-1570, 2011. © 2011 Wiley-Liss, Inc
In vivo acquisition and risk of inter-species spread of blaKPC-3-plasmid from Klebsiella pneumoniae to Serratia marcescens in the lower respiratory tract
In recent years, Serratia marcescens has emerged as an important agent of hospital-acquired infections, such as pneumonia, urinary tract infection, septicaemia and meningitis, particularly in vulnerable patients. Compared to Klebsiella pneumoniae and Escherichia coli, S. marcescens is less commonly associated with blaKPC genes, yet few cases of plasmid transmission at the gastrointestinal level from K. pneumoniae carbapenemase (KPC)-producing Enterobacterales to S. marcescens have been described. Here we report a case of in vivo acquisition, during a 3-month period of hospitalization in the intensive care unit, of a blaKPC-3 gene carried by a pKpQIL-IT plasmid, and its probable transmission at the bronchial level among different species of Enterobacterales, including K. pneumoniae and S. marcescens. By using whole genome sequence analyses we were able provide insight into the dynamics of carbapenem-resistance determinants acquisition in the lower respiratory tract, a novel anatomical region for such plasmid transmission events, that usually involve the gastrointestinal tract. The co-presence at the same time of both wild-type and resistant Enterobacterales could have been the critical factor leading to the spread of plasmids harbouring carbapenem-resistance genes, of particular importance during surveillance screenings. The possibility of such an event may have significant consequences in terms of antimicrobial treatment, with a potential limitation of therapeutic options, thereby further complicating the clinical management of high-risk critically ill patients
Performance evaluation of a new on-demand molecular test for the rapid identification of severe acute respiratory syndrome coronavirus 2 in pediatric and adult patients
The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has increased the need to identify additional rapid diagnostic tests for an accurate and early diagnosis of infection. Here, we evaluated the diagnostic performance of the cartridge-based reverse transcription polymerase chain reaction (RT-PCR) test STANDARD M10 SARS-CoV-2 (SD Biosensor Inc., Suwon, South Korea), targeting the ORF1ab and E gene of SARS-CoV-2, and which can process up to eight samples in parallel in 60 min. From January 2022 to March 2022, STANDARD (TM) M10 assay performance was compared with Xpert (R) Xpress SARS-CoV-2 (Cepheid, Sunnyvale CA) on 616 nasopharyngeal swabs from consecutive pediatric (N = 533) and adult (N = 83) patients presenting at the "Istituto di Ricovero e Cura a Carattere Scientifico" (IRCCS) Ospedate Pediatrico Bambino Gesu, Roma. The overall performance of STANDARD M10 SARS-CoV-2 was remarkably and consistently comparable to the Xpert (R) Xpress SARS-CoV-2 with an overall agreement of 98% (604/616 concordant results), and negligible differences in time-to-result (60 min vs. 50 min, respectively). When the Xpert (R) Xpress SARS-CoV-2 results were considered as the reference, STANDARD (TM) M10 SARS-CoV-2 had 96.5% sensitivity and 98.4% specificity. STANDARD M10 SARS-CoV2 can thus be safely included in diagnostic pathways because it rapidly and accurately identifies SARS-CoV-2 present in nasopharyngeal swabs
Protective Effects of Pyridoxamine Supplementation in the Early Stages of Diet-Induced Kidney Dysfunction
Pyridoxamine, a structural analog of vitamin B6 that exerts antiglycative effects, has been proposed as supplementary approach in patients with initial diabetic nephropathy. However, the molecular mechanism(s) underlying its protective role has been so far slightly examined. C57Bl/6J mice were fed with a standard diet (SD) or a diet enriched in fat and fructose (HD) for 12 weeks. After 3 weeks, two subgroups of SD and HD mice started pyridoxamine supplementation (150 mg/kg/day) in the drinking water. HD fed mice showed increased body weight and impaired glucose tolerance, whereas pyridoxamine administration significantly improved insulin sensitivity, but not body weight, and reduced diet-induced increase in serum creatinine and urine albumin. Kidney morphology of HD fed mice showed strong vacuolar degeneration and loss of tubule brush border, associated with a drastic increase in both advanced glycation end products (AGEs) and AGEs receptor (RAGE). These effects were significantly counteracted by pyridoxamine, with consequent reduction of the diet-induced overactivation of NF-kB and Rho/ROCK pathways. Overall, the present study demonstrates for the first time that the administration of the antiglycative compound pyridoxamine can reduce the early stages of diet-dependent kidney injury and dysfunction by interfering at many levels with the profibrotic signaling and inflammatory cascades
Temporal trend of drug-resistance and APOBEC editing in PBMC genotypic resistance tests from HIV-1 infected virologically suppressed individuals
Background: We aimed at evaluating the temporal trend of drug-resistance and APOBEC editing from HIV-DNA genotypic resistance tests (GRT) in virologically suppressed individuals.Material and methods: Major resistance mutations (MRM), genotypic susceptibility score (GSS) for the current regimen and APOBEC-related mutations (APO-M) were evaluated. Potential changes in trends of MRM and APO-M over-time were assessed and predictors of MRM detection or sub-optimal GSS (GSS<2) at HIV-DNA-GRT were estimated through logistic regression analyses.Results: Among the 1126 individuals included, 396 (35.2%) harboured at least one MRM (23.4% to NRTI, 18.8% to NNRTI, 7.7% to PI and 1.4% to INSTI [N=724]); 132 (12.3%) individuals showed a GSS <2. APO-M and stop codons were found in 229 (20.3%) and 105 (9.3%) individuals, respectively. APO-DRMs were found in 16.8% of individuals and were more likely observed in those individuals with stop codons (40.0%) compared to those without (14.4%, P<0.001). From 2010 to 2021 no significant changes of resistance or APO-M were found. Positive predictors of MRM detection at HIV-DNA GRT were drug abuse, subtype B infection, and a prolonged and complex treatment history. Perinatal infection and having at least 2 stop codons were associated with a current suboptimal regimen.Conclusions: In virologically suppressed individuals, resistance in HIV-DNA and the extent of APOBEC editing were generally stable in the last decade. A careful evaluation of APOBEC editing might be helpful to improve the reliability of HIV-DNA GRT. Further investigations are required to understand how to apply the estimation of APOBEC editing in refining genotypic evaluation
The genotypic false positive rate determined by V3 population sequencing can predict the burden of HIV-1 CXCR4-using species detected by pyrosequencing
The false-positive rate (FPR) is a percentage-score provided by Geno2Pheno-algorithm indicating the likelihood that a V3-sequence is falsely predicted as CXCR4-using. We evaluated the correlation between FPR obtained by V3 population-sequencing and the burden of CXCR4-using variants detected by V3 ultra-deep sequencing (UDPS) and Enhanced-Sensitivity Trofile assay (ESTA)
Anti-HBV treatment induces novel reverse transcriptase mutations with reflective effect on HBV S antigen
The identification of novel reverse-transcriptase (RT) drug-resistance mutations is critical in predicting the probability of success to anti-HBV treatment. Furthermore, due to HBV-RT/HBsAg gene-overlap, they can have an impact on HBsAg-detection and quantification
Novel HBsAg markers tightly correlate with occult HBV infection and strongly affect HBsAg detection.
Occult HBV infection (OBI) is a threat for the safety of blood-supply, and has been associated with the onset of HBV-related hepatocellular carcinoma and lymphomagenesis. Nevertheless, genetic markers in HBsAg (particularly in D-genotype, the most common in Europe) significantly associated with OBI in vivo are missing. Thus, the goal of this study is to define: (i) prevalence and clinical profile of OBI among blood-donors; (ii) HBsAg-mutations associated with OBI; (iii) their impact on HBsAg-detection. OBI was searched among 422,278 blood-donors screened by Nucleic-Acid-Testing. Following Taormina-OBI-definition, 26 (0.006%) OBI-patients were identified. Despite viremia <50IU/ml, HBsAg-sequences were obtained for 25/26 patients (24/25 genotype-D). OBI-associated mutations were identified by comparing OBI-HBsAg with that of 82 chronically-infected (genotype-D) patients as control. Twenty HBsAg-mutations significantly correlated for the first time with OBI. By structural analysis, they localized in the major HBV B-cell-epitope, and in HBsAg-capsid interaction region. 14/24 OBI-patients (58.8%) carried in median 3 such mutations (IQR:2.0-6.0) against 0 in chronically-infected patients. By co-variation analysis, correlations were observed for R122P+S167L (phi=0.68, P=0.01), T116N+S143L (phi=0.53, P=0.03), and Y100S+S143L (phi=0.67, p<0.001). Mutants (obtained by site-directed mutagenesis) carrying T116N, T116N+S143L, R122P, R122P+Q101R, or R122P+S167L strongly decreased HBsAg-reactivity (54.9±22.6S/CO, 31.2±12.0S/CO, 6.1±2.4S/CO, 3.0±1.0S/CO and 3.9±1.3S/CO, respectively) compared to wild-type (306.8±64.1S/CO). Even more, Y100S and Y100S+S143L supernatants show no detectable-HBsAg (experiments in quadruplicate). In conclusions, unique HBsAg-mutations in genotype-D, different than those described in genotypes B/C (rarely found in western countries), tightly correlate with OBI, and strongly affect HBsAg-detection. By altering HBV-antigenicity and/or viral-particle maturation, they may affect full-reliability of universal diagnostic-assays for HBsAg-detection
- …