72 research outputs found

    Equation of state for nucleonic and hyperonic neutron stars with mass and radius constraints

    Get PDF
    We obtain a new equation of state for the nucleonic and hyperonic inner core of neutron stars that fulfils the 2 M⊙ observations as well as the recent determinations of stellar radii below 13 km. The nucleonic equation of state is obtained from a new parameterization of the FSU2 relativistic mean-field functional that satisfies these latest astrophysical constraints and, at the same time, reproduces the properties of nuclear matter and finite nuclei while fulfilling the restrictions on high-density matter deduced from heavy-ion collisions. On the one hand, the equation of state of neutron star matter is softened around saturation density, which increases the compactness of canonical neutron stars leading to stellar radii below 13 km. On the other hand, the equation of state is stiff enough at higher densities to fulfil the 2 M⊙ limit. By a slight modification of the parameterization, we also find that the constraints of 2 M⊙ neutron stars with radii around 13 km are satisfied when hyperons are considered. The inclusion of the high magnetic fields present in magnetars further stiffens the equation of state. Hyperonic magnetars with magnetic fields in the surface of ~1015 G and with values of ~1018 G in the interior can reach maximum masses of 2 M⊙ with radii in the 12-13 km range

    The equation of state for the nucleonic and hyperonic core of neutron stars

    Get PDF
    We re-examine the equation of state for the nucleonic and hyperonic inner core of neutron stars that satisfies the 2M⊙ observations as well as the recent determinations of stellar radii below 13 km, while fulfilling the saturation properties of nuclear matter and finite nuclei together with the constraints on the high-density nuclear pressure coming from heavy-ion collisions. The recent nucleonic FSU2R and hyperonic FSU2H models are updated in order to improve the behaviour of pure neutron matter at subsaturation densities. The corresponding nuclear matter properties at saturation, the symmetry energy, and its slope turn out to be compatible with recent experimental and theoretical determinations. We obtain the mass, radius, and composition of neutron stars for the two updated models and study the impact on these properties of the uncertainties in the hyperon-nucleon couplings estimated from hypernuclear data. We find that the onset of appearance of each hyperon strongly depends on the hyperon-nuclear uncertainties, whereas the maximum masses for neutron stars differ by at most 0.1M⊙, although a larger deviation should be expected tied to the lack of knowledge of the hyperon potentials at the high densities present in the centre of 2M⊙ stars. For easier use, we provide tables with the results from the FSU2R and FSU2H models for the equation of state and the neutron star mass-radius relation

    Density dependence of the symmetry energy from neutron skin thickness in finite nuclei

    Get PDF
    The density dependence of the symmetry energy around saturation density, characterized by the slope parameter L, is studied using information provided by the neutron skin thickness in finite nuclei. An estimate for L is obtained from experimental data on neutron skins extracted from antiprotonic atoms. We also discuss the ability of parity-violating elastic electron scattering to obtain information on the neutron skin thickness in 208Pb and to constrain the density dependence of the nuclear symmetry energy. The size and shape of the neutron density distribution of 208Pb predicted by mean-field models is briefly addressed. We conclude with a comparative overview of the L values predicted by several existing determinations

    Influence of the single-particle structure on the nuclear surface and the neutron skin

    Get PDF
    We analyze the influence of the single-particle structure on the neutron density distribution and the neutron skin in Ca, Ni, Zr, Sn, and Pb isotopes. The nucleon density distributions are calculated in the Hartree-Fock+BCS approach with the SLy4 Skyrme force. A close correlation is found between the quantum numbers of the valence neutrons and the changes in the position and the diffuseness of the nuclear surface, which in turn affect the neutron skin thickness. Neutrons in the valence orbitals with low principal quantum number and high angular momentum mainly displace the position of the neutron surface outwards, while neutrons with high principal quantum number and low angular momentum basically increase the diffuseness of the neutron surface. The impact of the valence shell neutrons on the tail of the neutron density distribution is discussed

    From the crust to the core of neutron stars on a microscopic basis

    Get PDF
    Within a microscopic approach the structure of Neutron Stars is usually studied by modelling the homogeneous nuclear matter of the core by a suitable Equation of State, based on a many-body theory, and the crust by a functional based on a more phenomenological approach. We present the first calculation of Neutron Star overall structure by adopting for the core an Equation of State derived from the Brueckner-Hartree-Fock theory and for the crust, including the pasta phase, an Energy Density Functional based on the same Equation of State, and which is able to describe accurately the binding energy of nuclei throughout the mass table. Comparison with other approaches is discussed. The relevance of the crust Equation of state for the Neutron Star radius is particularly emphasised

    Relativistic mean-field interaction with density-dependent meson-nucleon vertices based on microscopical calculations

    Get PDF
    Although ab initio calculations of relativistic Brueckner theory lead to large scalar isovector fields in nuclear matter, at present, successful versions of covariant density functional theory neglect the interactions in this channel. A new high-precision density functional DD-MEÎŽ is presented which includes four mesons, σ, ω, ÎŽ, and ρ, with density-dependent meson-nucleon couplings. It is based to a large extent on microscopic ab initiocalculations in nuclear matter. Only four of its parameters are determined by adjusting to binding energies and charge radii of finite nuclei. The other parameters, in particular the density dependence of the meson-nucleon vertices, are adjusted to nonrelativistic and relativistic Brueckner calculations of symmetric and asymmetric nuclear matter. The isovector effective mass mp*−mn* derived from relativistic Brueckner theory is used to determine the coupling strength of the ÎŽ meson and its density dependence

    Unified equation of state for neutron stars on a microscopic basis

    Get PDF
    We derive a new equation of state (EoS) for neutron stars (NS) from the outer crust to the core based on modern microscopic calculations using the Argonne v18 potential plus three-body forces computed with the Urbana model. To deal with the inhomogeneous structures of matter in the NS crust, we use a recent nuclear energy density functional that is directly based on the same microscopic calculations, and which is able to reproduce the ground-state properties of nuclei along the periodic table. The EoS of the outer crust requires the masses of neutron-rich nuclei, which are obtained through Hartree-Fock-Bogoliubov calculations with the new functional when they are unknown experimentally. To compute the inner crust, Thomas-Fermi calculations in Wigner-Seitz cells are performed with the same functional. Existence of nuclear pasta is predicted in a range of average baryon densities between 0.067 fm−3 and 0.0825 fm−3, where the transition to the core takes place. The NS core is computed from the new nuclear EoS assuming non-exotic constituents (core of npeÎŒ matter). In each region of the star, we discuss the comparison of the new EoS with previous EoSs for the complete NS structure, widely used in astrophysical calculations. The new microscopically derived EoS fulfills at the same time a NS maximum mass of 2 M with a radius of 10 km, and a 1.5 M NS with a radius of 11.6 km

    Unified equation of state for neutron stars based on the Gogny interaction

    Get PDF
    t: The effective Gogny interactions of the D1 family were established by D. Gogny more than forty years ago with the aim to describe simultaneously the mean field and the pairing field corresponding to the nuclear interaction. The most popular Gogny parametrizations, namely D1S, D1N and D1M, describe accurately the ground-state properties of spherical and deformed finite nuclei all across the mass table obtained with Hartree-Fock-Bogoliubov (HFB) calculations. However, these forces produce a rather soft equation of state (EoS) in neutron matter, which leads to predict maximum masses of neutron stars well below the observed value of two solar masses. To remove this limitation, we built new Gogny parametrizations by modifying the density dependence of the symmetry energy predicted by the force in such a way that they can be applied to the neutron star domain and can also reproduce the properties of finite nuclei as good as their predecessors. These new parametrizations allow us to obtain stiffer EoS's based on the Gogny interactions, which predict maximum masses of neutron stars around two solar masses. Moreover, other global properties of the star, such as the moment of inertia and the tidal deformability, are in harmony with those obtained with other well tested EoSs based on the SLy4 Skyrme force or the Barcelona-Catania-Paris-Madrid (BCPM) energy density functional. Properties of the core-crust transition predicted by these Gogny EoSs are also analyzed. Using these new Gogny forces, the EoS in the inner crust is obtained with the Wigner-Seitz approximation in the Variational Wigner-Kirkwood approach along with the Strutinsky integral method, which allows one to estimate in a perturbative way the proton shell and pairing corrections. For the outer crust, the EoS is determined basically by the nuclear masses, which are taken from the experiments, wherever they are available, or by HFB calculations performed with these new forces if the experimental masses are not known

    Study of spin polarized nuclear matter and finite nuclei with finite range simple effective interaction

    Get PDF
    The properties of spin polarized pure neutron matter and symmetric nuclear matter are studied using the finite range simple effective interaction, upon its parametrization revisited. Out of the total twelve parameters involved, we now determine ten of them from nuclear matter, against the nine parameters in our earlier calculation, as required in order to have predictions in both spin polarized nuclear matter and finite nuclei in unique manner being free from uncertainty found using the earlier parametrization. The information on the effective mass splitting in polarized neutron matter of the microscopic calculations is used to constrain the one more parameter, that was earlier determined from finite nucleus, and in doing so the quality of the description of finite nuclei is not compromised. The interaction with the new set of parameters is used to study the possibilities of ferromagnetic and antiferromagnetic transitions in completely polarized symmetric nuclear matter. Emphasis is given to analyze the results analytically, as far as possible, to elucidate the role of the interaction parameters involved in the predictions

    Symmetry energy of warm nuclear systems

    Full text link
    The temperature dependence of the symmetry energy and symmetry free energy coefficients of infinite nuclear matter and of finite nuclei is investigated. For infinite matter, both these coefficients are found to have a weaker dependence on temperature at densities close to saturation; at low but homogeneous densities, the temperature dependence becomes stronger. For finite systems, different definitions of symmetry energy coefficients are encountered in the literature yielding different values. A resolution to this problem is suggested from a global liquid-drop-inspired fit of the energies and free energies of a host of nuclei covering the entire periodic table. The hot nucleus is modeled in a subtracted finite-temperature-Thomas-Fermi framework, with dynamical surface phonon coupling to nucleonic motion plugged in. Contrary to infinite nuclear matter, a substantial change in the symmetry energy coefficients is observed for finite nuclei with temperature
    • 

    corecore