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Influence of the single-particle structure on the nuclear surface and the neutron skin
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1Katedra Fizyki Teoretycznej, Uniwersytet Marii Curie–Skłodowskiej, ul. Radziszewskiego 10, 20-031 Lublin, Poland
2Departament d’Estructura i Constituents de la Matèria and Institut de Ciències del Cosmos (ICC), Facultat de Fı́sica,

Universitat de Barcelona, Diagonal 645, E-08028 Barcelona, Spain
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We analyze the influence of the single-particle structure on the neutron density distribution and the neutron
skin in Ca, Ni, Zr, Sn, and Pb isotopes. The nucleon density distributions are calculated in the Hartree-Fock+BCS
approach with the SLy4 Skyrme force. A close correlation is found between the quantum numbers of the valence
neutrons and the changes in the position and the diffuseness of the nuclear surface, which in turn affect the neutron
skin thickness. Neutrons in the valence orbitals with low principal quantum number and high angular momentum
mainly displace the position of the neutron surface outwards, while neutrons with high principal quantum number
and low angular momentum basically increase the diffuseness of the neutron surface. The impact of the valence
shell neutrons on the tail of the neutron density distribution is discussed.
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I. INTRODUCTION

The spatial distribution of nucleons inside a nucleus is
one of the most basic topics in nuclear physics. The density
distribution of protons is quite well mapped from the numerous
experiments of elastic electron-nucleus and muon-nucleus
scattering [1,2] and the charge radii of many nuclei are
known with uncertainties well below 1% [3]. Neutrons, as
neutral particles, are much harder to resolve, and knowledge
about their spatial layout in a nucleus is still limited. Until
now, neutron radii have been measured in less than thirty
isotopes, and the experimental neutron density distribution
is known only in a few nuclei with relatively large error bars
[4–12]. Thus, information about the layout of neutrons inside
a nucleus often comes only from the theoretical predictions at
present. However, new experimental advances in techniques
such as elastic proton scattering [12] and coherent pion
photoproduction from nuclei [13,14], and the advent of parity-
violating elastic electron scattering facilities [15–17], suggest
that largely improved determinations of neutron radii and
neutron density distributions may be possible in the near future.

Knowledge of neutron distributions is very important, as
it constitutes a necessary input in a wide range of problems
in physics. It is strongly related to the isospin properties of
nuclear forces and the nuclear symmetry energy [18–23].
The profile of the neutron density distribution is demanded
as an input in the analysis of many scattering experiments.
The arrangement of neutrons in nuclei is important for
collective nuclear excitations [24,25], such as giant dipole
resonance [26,27] and pygmy dipole resonance [28–30].
Precise knowledge of the neutron skin thickness (NST), i.e., the
difference between the neutron and proton root mean square
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(rms) radii,

�rnp = 〈r2〉1/2
n − 〈r2〉1/2

p , (1)

is not only of interest in nuclear structure physics. This
quantity is strongly correlated, within the realm of nuclear
mean-field theories [18,31–38], with the slope of the nuclear
symmetry energy at saturation density, and therefore may
be used to constrain the equation of state of neutron-rich
matter. Thus, the results of the investigation of the distribution
of neutrons in atomic nuclei affect studies of such distant
areas of physics as heavy-ion collisions [39–42], scattering
of polarized electrons on nuclei [15,36,43–47], precision tests
of the standard model by atomic parity violation [48,49], and
nuclear astrophysics [50–54].

Theoretical predictions of neutron density distributions can
be verified, in principle, by the comparison of the calculated
values of the neutron rms radii and of the NST with the
available experimental data. The uncertainties in the measured
values leave much freedom for theoretical neutron density
distributions [8,9,55,56]. Moreover, rms radii and the NST are
general properties of the neutron density distribution; different
density profiles (e.g., those calculated with various nuclear
forces) may give the same values of the neutron rms radius
and the NST [57]. Therefore, careful theoretical studies are
required to understand the physics of nucleon distributions
inside a nucleus. The main issues affecting the deviations of the
NST from the picture of a smooth variation with the neutron
excess of the nucleus are nuclear deformation [55] and the
quantum-mechanical properties of the nucleonic orbitals. In
the present article we concentrate on the latter effect.

The basic features of the neutron skin of nuclei can be
explained by the nuclear droplet model (DM) [58,59]. The
DM predicts that the NST grows on average linearly with
the relative neutron excess I = (N − Z)/A, which was
confirmed by the experimental data of Refs. [8,9]. In the
standard version of the DM the neutron and proton surface
diffusenesses are assumed to be equal, although the influence
of different surface diffusenesses between neutrons and
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protons was also investigated [19,59,60]. In particular, it
has been shown that the surface contribution to the NST in
nuclear mean-field models is not negligible [19,35,57,60,61];
indeed, self-consistent mean-field calculations predict in
many neutron-rich isotopes twice thicker neutron than proton
surface diffuseness. Moreover, abrupt changes of the surface
diffuseness between isotopes may appear (see Figs. 7 and 8
of Ref. [57]). It has been found that the surface of the neutron
distribution is narrower in the doubly magic nuclei, whereas
it extends over a wider region in the midshell nuclei. Such a
behavior suggests that quantum shell effects impinge on the
NST on top of the macroscopic DM predictions.

There is significant interest currently in the exploration of
the properties of exotic nuclei, as the radioactive ion beam
facilities in laboratories worldwide are extending the nuclear
landscape to new limits. We have devoted some effort in
previous works [62,63] to study the evolution of the nuclear
charge density from stable to exotic nuclei, and its relation with
the changes of the proton shell structure in isotopic and isotonic
chains. In the present article we investigate the influence of the
single-particle (sp) properties of the valence neutrons on the
nuclear surface and the neutron skin of stable and unstable
nuclei. We study several isotopic chains representative of
different mass regions in order to examine the changes of
the neutron skin when subsequent neutrons are added into
particular orbitals. We analyze two mechanisms of generating
the neutron skin. One of them arises from a displacement
between the positions of the equivalent neutron and proton
sharp surfaces (it is mostly a “bulk” effect). The other one
is a consequence of different surface diffuseness between the
neutron and proton density profiles (it is mostly a “surface”
effect). To minimize the influence of deformation on the results
[55] it is helpful to choose nuclei with magic proton number,
which are mostly spherical nuclei in their ground states. Hence,
we take into consideration the Ca, Ni, Zr, Sn, and Pb elements.
We focus our study mainly on the neutron-rich nuclei because
the neutron skin is larger and more sensitive to isotopic effects
there. We concentrate on the last full major shell (or shells) of
the considered elements. In this way we examine the neutron
skin in Ca and Ni from N = 20 to N = 50, in Zr and Sn from
N = 50 to N = 82, in Sn between N = 82 and N = 126, and
in Pb from N = 126 to N = 184. We start with the analysis
of the Sn isotopes ranging from N = 82 to 126 because the
discussed sp properties are quite well magnified and easy to
describe in this relatively long chain. After this illustrative
example we study the other elements.

The structure of this article is the following. In Sec. II
the basic ideas of our theoretical description of the NST
are collected (an extended presentation can be found in
Refs. [35,57]). The detailed analysis of the results for the NST
in the Sn isotopes is presented in Sec. III. The other isotopic
chains are discussed in Sec. IV. Finally, the conclusions are
presented in Sec. V.

II. BULK AND SURFACE CONTRIBUTIONS TO THE
NEUTRON SKIN THICKNESS

In our study we compute the density distributions of
nucleons in even-even isotopes in self-consistent Hartree-Fock

calculations using the SLy4 nuclear functional [64]. SLy4
is a Skryme-type force that was developed with a focus
on neutron-rich nuclei and the equation of state of neutron
matter. It has been successfully applied in studies of a wide
range of phenomena, and it is known to describe reasonably
well nuclear properties such as masses, deformations, nucleon
separation energies, and radii along the periodic table [65].
Though the general features of the NST described in this paper
are basically independent of the nuclear mean-field interaction
used to compute them, the fine details can depend to a certain
extent on the nuclear interaction. In our calculations we assume
spherical symmetry for all considered nuclei (however, some
of the Zr isotopes are known to be deformed in their ground
state). We use a volume BCS pairing with pairing strengths
V n

0 = 300 MeV and V
p

0 = 360 MeV. The pairing window
is taken to be 1�ω above the Fermi level. To fit the pairing
strengths we used as reference data the SLy4 results of the
HFB+Lipkin-Nogami model of Ref. [66] for the binding
energies of the midshell nuclei 116Sn for neutron pairing and
144Sm for proton pairing. The treatment of the continuum for
neutron-rich nuclei close to the drip line is done following the
prescription given in Ref. [67]. In this way the HFB energies
reported in Ref. [66] are overall well reproduced from the
proton to the neutron drip line. We find the two-neutron drip
line of the elements considered in the present work at 68Ca,
78Ni, 122Zr, 176Sn, and 266Pb, which is the same result as in
Ref. [66] excepting that the drip line nucleus 174Sn of Ref. [66]
is shifted to 176Sn in our calculation.

To get a better grasp of the properties of the neutron
skin it can be useful to fit the density profiles obtained in
the self-consistent mean-field calculations by two-parameter
Fermi (2pF) distributions [2,68]:

ρ(r) = ρ0

1 + exp [(r − C)/a]
, (2)

where ρ0 is the central density, C is the half-density radius, and
a describes the surface diffuseness. As a result, one obtains
numerically the two most important quantities characterizing
the shape of the density profiles: namely, the position and
the thickness of the nuclear surface. Both of them are crucial
for a proper determination of the NST, as the NST is defined
through the rms radii and consequently it is very sensitive to the
density profile at the surface. There is no unique prescription
to parametrize a given density profile with a 2pF function.
Following earlier works [35,57], we fit the a, C, and ρ0

parameters to reproduce the quadratic and quartic moments
of the neutron or proton density distribution, and the number
of nucleons. It has been shown that this method reproduces
with good accuracy the surface region of any realistic density
profile given as an input [35,57].

The neutron skin can be easily understood assuming 2pF
distributions for both neutrons and protons. Indeed, Fermi-type
densities are common in the extraction of neutron skins
from different experiments, as in the case of neutron skins
deduced from exotic atoms [8,69,70] or from coherent pion
photoproduction cross sections [13,14]. Within the context
of 2pF densities, it has become popular to discern two main
scenarios for the neutron skin of nuclei. In the first scenario,
the neutron skin is formed when the neutron half-density
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radius is larger than the proton half-density radius, and the
surface diffusenesses of neutrons and protons are the same
(i.e., Cn > Cp and an = ap). Such 2pF density profiles are
called a “skin” type distribution [8]. The alternative scenario
assumes that the differences between both density profiles
are due to an enlarged neutron surface diffuseness with the
same neutron and proton half-density radii (i.e., an > ap and
Cn = Cp). The corresponding 2pF density profiles are called
a “halo” type distribution [8]. In general, both situations may
coexist in a nucleus, simultaneously contributing to the NST
[18,19,35,57,59].

Despite the simplicity of describing the density profiles
through 2pF distributions, we have shown in previous papers
[35,57] that the half-density radii Cn and Cp are not the
most appropriate radii for extracting the bulk and surface
contributions to the NST. Following Refs. [35,57] we introduce
the bulk contribution as

�rbulk
np ≡

√
3

5
(Rn − Rp), (3)

where Rn and Rp are the neutron and proton equivalent
sharp radii, respectively [68]. The equivalent sharp radius R
corresponds to a sharp distribution with a uniform density,
equal to the bulk value of the actual density, having the same
number of particles [68]. As can be seen in Fig. 1 of Ref. [35]
and Fig. 2 of Ref. [57] (see also Ref. [68]), a sharp sphere with
radius C overestimates the original mean-field density in the
whole nuclear interior, whereas a sharp density distribution
with radius R is able to reproduce properly the bulk part of the
original density profile. Therefore, the sharp radius R rather
than the half-density radius C is the suitable radius to describe
the size of the bulk region of the nucleus [35,57,68].

It is possible to express R in terms of the parameters C
and a of the 2pF distributions [35,57,68], so that the bulk
contribution to the NST given by Eq. (3) can be written also
as

�rbulk
np �

√
3

5

[
(Cn − Cp) + π2

3

(
a2

n

Cn

− a2
p

Cp

)]
. (4)

The remaining part of the NST is the surface contribution:

�rsurf
np �

√
3

5

5π2

6

(
a2

n

Cn

− a2
p

Cp

)
. (5)

From Eqs. (4) and (5), it is clear that the difference between
the half-density radii Cn and Cp can affect not only the bulk
contribution but also the surface contribution to the NST.
Similarly, the difference between the surface diffusenesses an

and ap of the 2pF profiles affects �rsurf
np and also �rbulk

np . In
general, both the changes of the half-density radii and of the
surface diffusenesses contribute simultaneously to the NST.

Although the measurements provide data of the total NST
only, from the theoretical point of view it is interesting to
analyze the separate contributions of the bulk and surface parts
of the NST. Useful information about the nuclear surface can
be obtained from such investigation. In the next sections we
analyze how the bulk and the surface contributions change
along the selected isotopic chains and how they are correlated
with the sp properties of the valence neutrons.

0.0

0.1

0.2

0.3

0.4

0.5

80 90 100 110 120 130

Δr
np

 [
fm

]

N

(b)

total
bulk

surface

4.6

4.8

5.0

5.2

5.4

5.6

<
r2 >

1/
2
 [

fm
] Sn

(a)

neutron
proton

FIG. 1. (Color online) (a) Neutron and proton rms radii in Sn
isotopes with 82 � N � 126 calculated with the SLy4 Skyrme force.
(b) The NST of the Sn isotopes (black squares), and the corresponding
bulk (blue dots) and surface (red circles) contributions to the NST
[Eqs. (3) and (5)].

III. NEUTRON SKIN IN THE Sn ISOTOPIC CHAIN
FOR 82 � N � 126

The NST grows along the isotopic chain of a given element.
The DM of Myers and Świa̧tecki [58,71,72] explains this
behavior as it predicts a faster linear increase with the relative
neutron excess I = (N − Z)/A for the neutron rms radius than
for the proton rms radius. The rate of increase of the NST with
I is related to the density dependence of the nuclear symmetry
energy [18,19]. Calculations with nuclear mean field models
show that deviations from the linear growth with I can be
found in the NST [57]. It is easy to show that these deviations
are connected with shell properties of nuclei. Indeed, the NST
displays local minima for magic neutron numbers, whereas
it exceeds the average trend for midshell isotopes (see Fig. 9
of Ref. [57]). Therefore, to explain this nonlinearity, we have
to investigate the sp structure of nuclei. As a first example,
we study neutron-rich Sn isotopes of the major shell ranging
from N = 82 to N = 126. The last isotope in this chain is the
drip-line nucleus.

A. Correlation of neutron skin properties with quantum
numbers of valence neutrons

In Fig. 1(a) it is easy to see that both the neutron and
the proton rms radii of Sn increase with increasing neutron
number, and that the slope for neutrons is larger than for
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protons, as predicted by the DM. The difference between the
two curves of Fig. 1(a) is just the NST plotted in panel (b) of
this figure. The proton radii show a rather linear dependence
on the neutron number, whereas some departure from linearity
is observed in the neutron radii. The same departure from
linearity is therefore observed in the NST of the Sn isotopes.
Similar properties have been found in Ref. [73] where an
alternative splitting of the mean square radius into geometrical
and Helm radii is applied.

The bulk (3) and the surface (5) parts of the NST are
also plotted in Fig. 1(b). The lack of linearity visible in the
NST diagram is magnified in the individual plots of these
contributions. Four intervals of neutron number, marked in
Fig. 1 by white and grey stripes, can be easily distinguished
in this plot. The first interval covers the region from N = 82
to N = 90 where the bulk part �rbulk

np remains almost constant
and the surface part �rsurf

np increases roughly linearly. The
second region, up to N = 96, is characterized by a fast increase
of �rsurf

np and, simultaneously, a decrease of �rbulk
np . Next, up to

N = 110, �rsurf
np remains roughly constant around its maximal

value reached at N = 102 and �rbulk
np rises almost linearly with

N . Finally, till the shell is completely filled up at the magic
number N = 126, �rbulk

np grows and �rsurf
np decreases, both of

them linearly.
In order to explain the variations of the bulk and the surface

contributions in the NST diagram, selected sp properties of
the considered Sn isotopes are plotted in Fig. 2. First, the
sp energies εnlj of the levels belonging to the major shell
are shown in panel (a) and their occupancy v2

nlj in panel
(b). The energy and the occupancy of these levels show a
distinct behavior in each interval outlined above. In the first
region, from N = 82 up to N = 90, the lowest 2f7/2 level is
progressively populated with neutrons. Its occupancy grows
from 0 to almost 1 while the other orbitals remain unoccupied
due to the large energy gap, fairly over 1 MeV, that separates
the 2f7/2 level from the higher levels. The 3p3/2 level crosses
the Fermi level between N = 90 and N = 96. Its occupancy
increases faster in this region than the occupancy of the 1h9/2,
2f5/2, and 3p1/2 orbitals which are slightly higher in energy.
Next, from N = 96 to N = 110, the four aforementioned
levels are filled up when more neutrons are added to the Sn
nuclei. At N = 110 the occupancy of these orbitals ranges
between 0.7 and 0.9 and in the heaviest isotopes they are
almost fully occupied. The 1i13/2 level, the highest in energy,
behaves otherwise. Its occupancy grows slowly up to 0.2 at
N = 110 and then it rises much faster in the heavier isotopes,
without a plateau at the shell closure at N = 126.

We can correlate the behavior of �rbulk
np and �rsurf

np with
the principal quantum number n and the orbital angular
momentum l of the orbitals occupied by the valence neutrons
in the intervals shown in Fig. 1(b). The type of orbitals lying
in the vicinity of the Fermi level plays a crucial role in the
determination of the neutron radii. When high-n–low-l levels
within the shell are populated, one observes an increase of
�rsurf

np , whereas low-n–high-l levels are more correlated with
the growth of �rbulk

np .
In the considered shell of the Sn isotopes, the two 3p

levels (displayed with red circles in Fig. 2) have an especially
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FIG. 2. (Color online) Single-particle properties of the neutron
orbitals belonging to the major valence shell for Sn isotopes with
82 � N � 126 calculated with the SLy4 Skyrme force. (a) Single-
particle energies and Fermi level, (b) occupancy of each orbital,
(c) mean square radii of each orbital defined in Eq. (6) and total
neutron mean square radius of the isotope, and (d) contributions to
the mean square radius of each level τnlj defined in Eq. (7). The
3p3/2 and 3p1/2 orbitals are marked by red circles, the 2f7/2 and 2f5/2

orbitals by green squares, and the 1h9/2 and 1i13/2 orbitals by blue
dots.

large impact on the results. At first look, it seems unexpected
because only 6 neutrons out of 44 from the whole shell can
occupy these two levels. To understand this effect, let us look
at panel (c) of Fig. 2 where the mean square radius of each sp
orbital, defined as

〈r2〉nlj =
∫

dr r2ϕ2
nlj (r), (6)

is plotted for the valence shell neutrons. In Eq. (6), ϕnlj (r) is the
normalized wave function. Note that 〈r2〉nlj does not depend on
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the occupancy v2
nlj or on the multiplicity 2j + 1 of the orbital.

The mean square radii of the majority of the levels are in the
range of 30–50 fm2 for all Sn isotopes, which is less than twice
the total mean square radii of these isotopes. However, the
mean square radii of the 3p levels are much larger. They reach
values of 65–90 fm2 when they start to be populated at N = 90
and of 50–55 fm2 in the heaviest isotopes. Such a huge value
magnifies the contribution of a few neutrons to the neutron ra-
dius when these levels are occupied. To visualize this effect, in
panel (d) of Fig. 2 we have plotted the quantity τnlj , defined as

τnlj = v2
nlj 〈r2〉nlj , (7)

which describes the contribution of a single neutron to the
total value of the neutron mean square radius 〈r2〉n. Thus we
may write the neutron mean square radius as

〈r2〉n = 1

N

∑
nlj

(2j + 1)τnlj , (8)

where N is the neutron number of the isotope.
In Fig. 2(d) we see that τnlj roughly follows the pattern of

v2
nlj . Nevertheless, the τnlj values of the 3p orbitals show a

different behavior. They are magnified in comparison to the
other levels. For example, for N = 98 the 3p3/2 orbital has the
same impact on the neutron radius as the 2f7/2 orbital, despite
their occupancies being respectively 0.6 and 0.9. Neutrons
from the fully occupied 3p levels have larger τnlj values than
the other orbitals of the valence shell. Due to the large 〈r2〉nlj

value of the 3p levels, neutrons from these orbitals have a very
strong impact on the neutron radius.

From the knowledge of the impact of particular orbitals on
the structure of the neutron surface, we can now explain the
curvature of the diagrams in Fig. 1. In the first half of the shell,
neutrons occupy mainly transitional (such as 2f ) or high-n–
low-l (such as 3p) orbitals. They give an additional increase of
the surface diffuseness of the neutron distribution. This can be
seen in Fig. 3, where we compare the neutron density profile
and its derivative of the magic nucleus 132Sn with the midshell
isotope 154Sn. It is clear that in 154Sn the surface diffuseness
is larger and that the slope of the surface fall-off is smaller. In
the second half of the shell, the influence of the low-n–high-l
level 1i13/2 gives the opposite effect of decreasing the surface
diffuseness. In the particular example of the isotopes 132Sn,
154Sn, and 176Sn we have found that an takes values 0.526,
0.815, and 0.720 fm, respectively. Thus, the neutron density
profile of 176Sn, also plotted in Fig. 3, has a larger slope of the
density distribution at the surface than in 154Sn.

At this stage, let us summarize the above observations for
the sake of clarity. The comparison of Figs. 1(b) and 2(d)
unravels a correlation between the changes in the isotopic shift
of the NST and the sp spectrum of the orbitals in the considered
shell. When high-n–low-l orbitals are populated (e.g., 3p3/2

between N = 90 and 96), a rapid increase of the surface
contribution �rsurf

np to the NST of a nucleus can be noticed. It is
manifested by an additional increase of the NST. Conversely,
when levels with low-n–high-l quantum numbers are being
occupied (e.g., 1i13/2 above N = 110), the bulk contribution
�rbulk

np increases while �rsurf
np decreases. Population of orbitals

with intermediate principal quantum number and angular
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FIG. 3. (Color online) Neutron density profiles of Sn isotopes
with N = 82, N = 104, and N = 126 (a) and their derivatives (b).

momentum (such as the 2f7/2 orbital below N = 90) supports
both the contributions to the NST. When several types of
levels are filled simultaneously (96 � N � 110) we see a
combination of both effects.

B. Single-particle neutron density distributions

In order to find the source of the correlation described in
the previous subsection, we have to investigate the spatial dis-
tribution of the neutrons from each particular orbital. In Fig. 4
we analyze the neutron distribution of 176Sn, i.e., the heaviest
isotope in the considered shell with all occupied orbitals. We
compare the total neutron density distribution, plotted with
solid lines, with the density distributions of neutrons from
each level of the valence shell (dashed lines) defined as

ρnlj (r) = (2j + 1)v2
nljϕ

2
nlj (r). (9)

Indeed, the sp mean square radii defined in Eq. (6) can be ex-
pressed for fully occupied orbitals (v2

nlj = 1) through ρnlj (r) as

〈r2〉nlj = 4π

2j + 1

∫ ∞

0
dr r4ρnlj (r). (10)

The difference between the total density ρ(r) and the
density of each orbital ρnlj (r) is also plotted in Fig. 4 with
the dotted line. In this way we find how neutrons from each
level of the last shell modify the total neutron density profile
and how they affect the neutron surface. The behavior of the sp
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FIG. 4. (Color online) Neutron density profile (red solid line) of 176Sn compared to the single-particle density ρnlj (r) of an individual orbital
defined in Eq. (9) (multiplied by 10, green dashed line) and their difference (blue dotted line) for the orbitals (a) 3p3/2, (b) 2f7/2, (c) 1h9/2,
(d) 3p1/2, (e) 2f5/2, and (f) 1i13/2 as a function of the distance from the center of the nucleus. The function σnlj (r) defined in Eq. (12) (magenta
dot-dashed line) is presented on the right vertical scale. The vertical dashed line indicates the position of the half-density radius Cn = 6.367 fm.

density distribution of each orbital is consistent with the basic
quantum mechanical properties of the nuclear orbitals.

The main contribution of the 3p levels to the total density
(left panels of Fig. 4) is due to the innermost bump of their
sp densities which is located in the interior of the nucleus at
distances below 3 fm from the center. The two outer bumps of
the density of the 3p orbitals contribute much less to the total
neutron density. In the central panels of Fig. 4 we can see that
the inner bump of the 2f orbitals is peaked at r ≈ 3 fm. It also
mainly contributes to the bulk region of the total density. The
outer bump of the 2f orbitals, located at the surface, is much
smaller. In contrast, neutrons from n = 1 orbitals (right panels
of Fig. 4) practically do not contribute to the total density
at distances below 2 fm from the center. The single peak of
their density distribution is localized in the surface region with
the maximum at r = 5–6 fm. It can be seen that the orbitals
1h9/2 and 1i13/2 modify the density distribution by shifting
the whole surface outside and enlarging the half-density
radius.

The analysis of just the density profile may not be enough
when mean square (ms) or rms radii are treated as a measure
of the nuclear size. In the integral defining the mean square

radii of spherical nuclei, the nuclear density is weighted by the
fourth power of the distance from the center:

〈r2〉 = 4π

N

∫ ∞

0
dr r4ρ(r). (11)

The subintegral function in this expression is peaked at the
nuclear surface. Therefore 〈r2〉 is much more sensitive to the
shape of density profile at the surface than to the nuclear bulk
density. To check the contribution of the neutrons in each
sp level to the mean square radii we have to examine the
sp densities multiplied by r4. Therefore, in Fig. 4 (vertical
scale on the right) we have also plotted the function σnlj (r)
(dash-dotted line) defined as

σnlj (r) = 4πr4v2
nljϕ

2
nlj (r). (12)

This function is the contribution of a single neutron in the nlj
orbital to the mean square neutron radius that for a spherically
symmetric nucleus reads

〈r2〉n = 1

N

∑
nlj

(2j + 1)
∫ ∞

0
dr σnlj (r). (13)
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Notice that the function σnlj (r) is related to the τnlj number,
introduced before in Eq. (7), by

τnlj =
∫ ∞

0
dr σnlj (r). (14)

As expected, the function σnlj (r) for all neutron orbitals is
concentrated at the surface and vanishes in the nuclear interior.
The inner bumps of σnlj (r) in the 3p and 2f orbitals, unlike
ρnlj (r), are strongly damped in comparison with the other
bumps. Some important differences can be observed in the
spatial distribution of σnlj (r) between the various types of
orbitals. In the 3p levels, the outermost bump of σnlj (r) is
peaked in the tail of the neutron density distribution, around
1.5 fm from the half-density radius Cn (indicated in Fig. 4 by
the black dashed vertical line). Almost the whole contribution
of σnlj (r) to 〈r2〉nlj in the 3p levels comes from the region
outside Cn. The values of σnlj (r) are significant even at large
distances beyond the nuclear surface where the neutron density
is negligible. Thus, the two 3p levels enlarge the neutron rms
radius mainly by modifying the surface diffuseness.

In the transitional 2f levels the maximum of σnlj (r) is
located less than 1 fm outside Cn. Both the surface region
and the tail of the density contribute to the function σnlj (r).
The influence of the 2f orbitals on the neutron skin is more
ambiguous than in the case of the 3p orbitals because they
simultaneously contribute to the surface part and to the bulk
part of the NST.

The function σnlj (r) of the low-n–high-l neutrons (1h9/2

and 1i13/2) has a single bump with a maximum in the
vicinity of the half-density radius Cn. It is distributed rather
symmetrically around Cn and does not extend to large
distances. Neutrons from these orbitals almost do not modify
the surface diffuseness an, but increase the half-density radius
Cn. As a consequence, the surface contribution �rsurf

np to the
neutron skin diminishes and the bulk part �rbulk

np increases
substantially.

In Fig. 5 we have plotted for 176Sn the same functions as
in Fig. 4 but for all neutrons from the whole valence shell.
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FIG. 5. (Color online) The same as in Fig. 4, but for the whole
valence major shell from N = 82 to N = 126.

The net total contribution of the neutrons from the last shell,
denoted by ρshell(r), is displayed by the dashed line in Fig. 5.
It is distributed rather evenly throughout the nuclear interior.
Due to the lack of s orbitals in the considered shell, it vanishes
in the center of the nucleus. The total density distribution in
the surface region is determined mostly by the neutrons from
the last shell. The contribution of σshell(r) to the neutron mean
square radius averages the contributions of all the orbitals of
the valence shell. It is peaked around the half-density radius
and it has quite a large width, extending to the area outside the
nuclear surface. Therefore, the shell as a whole contributes to
both the bulk and surface parts of the neutron skin.

C. Structure of the tail of the neutron density distribution

In the previous subsection, we have found that the tail of the
density beyond the mean position of the nuclear surface gives
a non-negligible contribution to the neutron mean square radii
and is significant for the neutron skin formation. Now we will
discuss the structure of the tail of the neutron densities along
the valence shell of the Sn isotopic chain. In Fig. 6 we have
plotted with the thick solid line the ratio of the density of the
nucleons from the whole N = 82–126 shell to the total neutron
density ρshell(r)/ρneutr(r) for the few selected Sn isotopes along
the considered shell. In all these nuclei, ρshell(r)/ρneutr(r) grows
from r = 5 fm and reaches 90% at r = 10–12 fm. Hence, the
valence nucleons play a dominant role in the structure of the
tail of the density distribution.

In Fig. 6 the ratio ρnlj (r)/ρneutr(r) of the orbital density,
defined in Eq. (9), to the total neutron density is also plotted
[74]. The huge influence of the single neutrons on the tail of
the nuclear density distribution can be noticed. In panel (a) of
Fig. 6, the case of 136Sn is shown, where only four neutrons
mainly from the 2f7/2 orbital are present in the last shell. The
ratio to the total density reaches around 60% at r = 10 fm. The
contribution of the 2f7/2 level in heavier isotopes diminishes
in favor of the other orbitals, but even in the heaviest isotopes
its maximum remains at the level of a 20% contribution. In all
of the isotopes, neutrons from only a few orbitals determine
the total density of the nuclear tail. Even as close to the bulk
as at half-density radius, selected orbitals share 10%–20% of
the total density, e.g. 1i13/2 in 176Sn. Despite the fact that they
accomodate only six neutrons, the 3p3/2 and 3p1/2 levels seem
to be dominant in the tail at large distances, where these two
levels together account for even 80% of the neutron density.

In the analysis of the sp contribution to the tail of the neutron
density, we cannot forget about the rapid, exponential decrease
of the neutron density at large distances outside the nuclear
surface. It is depicted in Fig. 7 where the neutron density of the
nucleus 176Sn is plotted in logarithmic scale. It can be noticed
that beyond r = 10 fm the neutron density of 176Sn decreases
below 10−3 fm−3, which is 1% of the bulk density. At these
distances only neutrons from the valence shell N = 82–126
contribute to the total neutron density, which confirms the
conclusions deduced from Fig. 6(f). When we look into the
individual densities of the sp orbitals, also displayed in Fig. 7,
we notice that the type of orbital determines the slope of the
logarithmic decrease of the sp neutron density. The fall-off of
the 3p levels is slower than for the 2f levels, and the largest

064302-7
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FIG. 6. (Color online) Ratio of the whole shell density (magenta thick solid line) and of the single-particle level density to the total neutron
density as a function of the distance from the center of the nucleus in Sn isotopes: (a) 136Sn, (b) 144Sn, (c) 152Sn, (d) 160Sn, (e) 168Sn, and
(f) 176Sn. The ratios for the 3p3/2 and 3p1/2 orbitals are marked by red lines, the ratios for the 2f7/2 and 2f5/2 orbitals by green lines, and the
ratios for the 1h9/2 and 1i13/2 orbitals by blue lines. The vertical dashed line indicates the position of the half-density radius Cn in each of the
considered nuclei.

slope is found for the 1h9/2 and 1i13/2 levels. Thus, the 3p levels
participate much more than the low-n–high-l levels to the total
neutron density at very large distances from the center of the
nucleus, as expected from their high mean square radii [cf.
〈r2〉nlj in panel (c) of Fig. 4 and σnlj (r) in Fig. 5]. At distances
larger than about 4 fm from the half-density radius, the 3p
levels determine the slope of the fall-off of the neutron density.
We have to remember that in this region the 3p orbitals still
contribute to the neutron rms radii as the densities are weighted
by r4 in the calculation of this observable [cf. Eq. (11) and
Figs. 4 and 5]. The shape of the tail of the nuclear density is also
very important in the analysis of the experiments performed in
exotic atoms such as antiprotonic or pionic atoms. The heavy,
negatively charged particle annihilates at distances around 2
or 3 fm from the nuclear surface [10,69,70] and it is highly
sensitive to the differences between the neutron and proton
density distributions in this region.

In this section we have studied the correlation between the
quantum numbers of the valence neutrons and the neutron skin
of Sn isotopes. Neutron orbitals with low principal quantum
number n and high angular momentum l are localized at the

nuclear surface. They induce a shift of the neutron half-density
radius and increase the bulk contribution to the NST. Neutron
levels with high principal quantum number n and low angular
momentum l can be found in the same shell. The outermost
bump of their density distribution is localized in the tail of
the neutron density profile. It brings about a large contribution
to the mean square neutron radii and determines the slope
of the logarithmic fall-off of the neutron density outside the
surface region. The high-n–low-l orbitals are responsible for
increasing the surface contribution to the NST.

IV. NEUTRON SKIN IN THE OTHER ISOTOPIC CHAINS

With the experience gained in the previous section, we
analyze on the same footing the other isotopic chains with
magic proton number, namely Ca, Ni, Zr, light Sn isotopes,
and Pb, which are representative of different mass regions.

A. Ca and Ni isotopes with 20 � N � 50

We study Ca and Ni isotopes in the range covering the
two major neutron shells N = 20–28 and N = 28–50. The
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FIG. 7. (Color online) Neutron density of 176Sn as a function of
the distance from the center of the nucleus (black dotted line) in
logarithmic scale compared to the contribution from the whole N =
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from the single-particle orbitals. The densities of the orbitals are
marked by red lines for the 3p3/2 and 3p1/2 levels, by green lines
for the 2f7/2 and 2f5/2 levels, and by blue lines for the 1h9/2 and
1i13/2 levels. The vertical dashed line indicates the position of the
half-density radius Cn = 6.367 fm of the nucleus.

neutron drip line of the Ca isotopes is reached at N = 48
close to the upper limit of the N = 28–50 shell, whereas it is

shifted to N = 60 for Ni. In Figs. 8(a) and 8(b) we can see,
similarly to the case of the Sn isotopes, that the proton rms
radius of the Ca and Ni isotopic chains grows rather smoothly,
whereas the neutron rms radius increases with a variable slope.
The additional eight protons in Ni make the proton rms radii
of this element larger than in Ca by ∼0.25 fm. However,
the neutron rms radii change very little from Ca to Ni. As a
consequence, the NST in the Ni isotopes is around 0.25 fm
smaller than in Ca for the same number of neutrons. Indeed, in
the neutron-deficient isotopes of Ni from N = 20 till N = 28,
the NST [as well as its bulk and surface parts, which are plotted
in Figs. 8(c) and 8(d)] is negative. The total change in absolute
value of the NST from N = 20 to N = 50 is similar in both
the Ni and Ca isotopic chains; that is, around 0.55 fm for Ni
and 0.59 fm for Ca.

Looking at the bulk �rbulk
np and surface �rsurf

np contributions
to the NST in Ca and Ni, one sees from Fig. 8 that the largest
part of the change of the NST from Ca to Ni comes from the
change of �rbulk

np between these two elements, whereas �rsurf
np

changes less from one element to the other element. In fact, in
the case of the magic numbers N = 20, N = 28, and N = 50
it is seen that the value of �rsurf

np is almost equal in Ca and Ni.
Thus, the decrease of the NST from Ca to Ni in these nuclei
with magic neutron number is produced almost entirely by the
decrease of the bulk contribution �rbulk

np .
Four intervals of the neutron number are clearly distin-

guished in the bulk and surface contributions to the NST
in Figs. 8(c) and 8(d). In the first interval, corresponding to
the N = 20–28 shell, the bulk contribution to the NST grows
almost linearly and the surface contribution remains practically
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FIG. 8. (Color online) The same as in Fig. 1 but for Ca and Ni isotopes with 20 � N � 50.
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FIG. 9. (Color online) The same as in Fig. 2 but for Ca and Ni isotopes with 20 � N � 50. Note that the vertical scale of panel (b) is on
the right axis.

constant. The low-n–high-l level 1f7/2 is populated within this
region, as it can be seen from panels (a)–(d) of Fig. 9 which
display the position and occupation of the levels close to the
Fermi energy for the Ca and Ni isotopes. The second interval of
the neutron number ranges from N = 28 to N = 34 in Ca and
to N = 32 in Ni. In these nuclei the surface contribution to the
NST grows rapidly while the bulk part slightly decreases. The
2p3/2 level is being filled mostly in this interval as well as
the 2p1/2 level in Ca [cf. Figs. 9(a)–9(d)].

The third interval of Fig. 8 covers the isotopes up to N = 40
where the bulk part of the NST increases and the surface
part slightly decreases (Ca) or remains almost constant (Ni).
Within this region, in Ca mainly the 1f5/2 level is being
occupied. The 2p1/2 level lies closer to the 1f5/2 level in Ni
than in Ca, and consequently, these two orbitals in Ni are pop-
ulated almost simultaneously between N = 32 and N = 40

[cf. Figs. 9(a)–9(d)]. Thus, the third interval in neutron number
of the Ni isotopes starts already at N = 32, rather than at
N = 34 as in Ca. In this third interval of Ni the influence of
the 2p1/2 orbital on the NST of Ni is overpowered by neutrons
from the 1f5/2 orbital; one finds a very modest rise of the
surface part �rsurf

np of the NST while the bulk part �rbulk
np

grows linearly [see Fig. 8(d)].
The fourth interval of Fig. 8 ranges between N = 40 and

N = 50, where occupation of the 1g9/2 level takes place. In
Ca between N = 40 and N = 46 both the bulk and surface
contributions to the NST take a similar value with a slight
growing trend with N . For larger number of neutrons in
the Ca isotopes, �rbulk

np increases faster again whereas �rsurf
np

decreases till reaching N = 50. In Ni, from the semimagic
number N = 40 till N = 50 a clear linear increase of �rbulk

np

is accompanied by a slow decrease of �rsurf
np . This behavior
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FIG. 10. (Color online) The same as in Figs. 4 and 5 but for 70Ca in panels (a)–(f) and for the 20 � N � 50 shell of Ca in panel (g).

is in agreement with the general trend for the low-n–high-l
orbitals, as in Ni only the 1g9/2 level is populated.

The source of the changes in the behavior of the NST
becomes clear in Fig. 9 where the sp properties of the valence
orbitals are displayed. We can discuss them relying on the
analysis performed in the previous section for Sn isotopes. In
Fig. 9 it can be seen that the neutron orbitals in the vicinity
of the Fermi level are rather well separated in energy. Hence,
we expect quite clear differences in �rbulk

np and �rsurf
np between

neutron number intervals.
The 2p orbitals of Ca and Ni play a similar role to the 3p

levels in Sn. They should contribute mainly to the surface of
the neutron distribution. Indeed, a sudden increase of �rsurf

np is
observed in the second interval of Fig. 8. It can be noticed from
Fig. 9 that in Ca and Ni the mean square radii of the 2p levels
are similar to those of the neighboring levels, unlike the case
of the 3p orbitals in the Sn isotopes. The total neutron density
and the sp densities ρnlj (r) of the individual neutron orbitals
defined in Eq. (9), as well as the function σnlj (r) defined in
Eq. (12), are plotted in Fig. 10 for the 70Ca nucleus. Though the
peak of the σnlj (r) function of the 2p levels of Ca lies closer to
the half-density radius than in the case of the 3p levels of Sn
(cf. Fig. 4), the 2p levels still give an important contribution
to the tail of the neutron density.

The low-n–high-l levels 1f7/2, 1f5/2, and 1g9/2 are expected
to contribute to the NST by increasing the bulk part. In fact,
in the first, third, and fourth intervals of Fig. 8 we see a
clear increase of �rbulk

np . In the Ca chain the last low-n–high-l
orbital 1g9/2 is bound only for N > 42 with energy close to
zero, as seen in panel (a) of Fig. 9. The continuum affects
the behavior of the Ca 1g9/2 orbital at large distances from
the nuclear center. This almost unbound orbital extends to a
region far away from the nucleus. Consequently, the tail of the
σnlj (r) function for the 1g9/2 level [see panel (c) of Fig. 10]
is larger than for the 1f levels (central panels of Fig. 10).
Hence, a relatively large impact of the 1g9/2 level in the surface
contribution to the NST of the Ca isotopes beyond N = 40 is
observed in Fig. 8(c). On the other hand, in Ni isotopes the
1g9/2 level is shifted down by around 5 MeV in comparison
to Ca, owing to the larger number of protons in Ni. Its energy
is far below zero and therefore in Ni the neutron skin splitting
in bulk and surface parts for this low-n–high-l orbital is not
disturbed by the influence of the continuum, unlike in Ca.

B. Zr and Sn isotopes with 50 � N � 82

We have considered the shell with N = 50–82 neutrons
in the Zr and Sn elements [60]. The neutron drip line of the
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FIG. 11. (Color online) The same as in Fig. 1 but for Zr and Sn isotopes with 50 � N � 82.

Zr isotopes is reached at the end of this range. In Fig. 11
we can see again the roughly linear increase of the proton
rms radii with larger N , whereas the neutron rms radii, as
well as the NST, rise with a rather curved shape. We can
also see that the difference in proton number between the two
elements affects mainly the proton rms radii, shifting them by
a practically constant value of around 0.2 fm along the shell.
The neutron rms radii, however, remain very similar in the two
elements. As a consequence, the NST decreases from Zr to
Sn by the same amount as the proton radii increase from Zr
to Sn.

If we compare the values of the bulk and surface contribu-
tions to the NST in Zr with the values of these contributions in
Sn, it turns out that the bulk contribution �rbulk

np has decreased
from Zr to Sn by a roughly constant shift of 0.15 fm, whereas
the surface contribution �rsurf

np remains almost the same or
decreases by no more than 0.05 fm from Zr to Sn. Altogether,
it implies that the change of the NST between the two elements
takes place, in essence, through the modification of the sharp
radius of the proton density distribution caused by the different
proton number, whereas the surface diffuseness remains less
affected. Actually, it is interesting to observe that in the nuclei
with neutron magic number (N = 50 and N = 82) the value
of �rsurf

np is practically identical in Zr and Sn, which means
that in these nuclei the change of �rnp between Zr and Sn is
exclusively due to the change of �rbulk

np . These observations
are in consonance with what we had found before in the study
of the NST in Ca and Ni.

The bulk and the surface contributions to the NST in the
Zr and Sn isotopes, unlike in the previously discussed Ca and
Ni elements, change their slopes rather smoothly without any
kinks in the graph [see Figs. 11(c) and 11(d)]. Nevertheless,
three intervals can be distinguished. In the first interval, up to
N = 58, the surface part grows linearly. In the second interval
with N = 58–70, the surface contribution is roughly constant
around its maximal value. In the third interval, beyond N = 70,
�rsurf

np decreases. The bulk contribution remains practically
constant up to N = 58 and for heavier isotopes it increases
linearly up to the end of the shell.

Five levels from the major shell with N = 50–82 can be
found in the energy spectrum of the Zr and Sn isotopes,
as displayed in Fig. 12. There are two low-n–high-l levels:
1g7/2 and 1h11/2; and three high-n–low-l levels: 2d5/2, 2d3/2,
and 3s1/2. In the first interval till N = 58, the 2d5/2 level
is being filled almost without interference from the other
orbitals [see panels (c) and (d) of Fig. 12]. Similarly, in the
last interval beyond N = 70 mainly the 1h11/2 level is being
populated. It explains the behavior shown in Figs. 11(c) and
11(d) by the bulk and surface contributions to the NST in
the regions between N = 50–58 and N = 70–82 of the Zr
and Sn isotopic chains. In the intermediate region between
N = 58 and N = 70, the contribution of the 2d5/2 level
almost saturates and the 1h11/2 level practically does not yet
contribute to the neutron radii. The remaining 3s1/2, 2d3/2, and
1g7/2 levels play the main role in this interval. The influence
of the 3s1/2 and 2d3/2 orbitals keeps �rsurf

np from falling
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FIG. 12. (Color online) The same as in Fig. 2 but for Zr and Sn isotopes with 50 � N � 82. Note that the vertical scale of panel (b) is on
the right axis.

down, whereas the presence of the 1g7/2 orbital makes �rbulk
np

increase.

C. Pb isotopes with 126 � N � 184

The last element considered in this article is Pb. We
concentrate on neutron-rich isotopes with 126 � N � 184.
The Pb neutron drip line is reached at the end of this shell.
In Fig. 13 we can see an almost linear behavior of the rms
radii for both protons and neutrons. Also the NST and its bulk
and surface contributions are overall roughly linear with N .
As it can be seen in Fig. 14, the large level density around the
Fermi energy in these heavy nuclei causes the occupancy of
all orbitals to rise along the whole shell. Hence, the influence
of the sp properties onto the nuclear surface is smoothed
out in this element. Nevertheless, the slight changes of the

slope of the bulk and surface contributions to the NST, which
can be seen in panel (b) of Fig. 13, allow one to divide the
shell into four regions. In order to explain these variations we
shall look into the orbitals from this valence shell, which are
displayed in Fig. 14. There are seven different levels in this
shell. We classify them into three groups: the low-n–high-l
levels 1i11/2 and 1j15/2, the transitional levels 2g9/2 and 2g7/2,
and the high-n–low-l levels 3d5/2, 3d3/2, and 4s1/2. Although
the occupancy of all levels changes throughout the shell, in
each interval the occupancy of some orbitals increases much
faster than the occupancy of the other orbitals.

In the first interval, up to N = 136, the bulk and the surface
parts of the NST increase with a similar slope. The occupancy
of the transitional 2g9/2 level grows very fast here. In the
second region, between N = 136 and 148, the low-n–high-
l 1i11/2 level is mostly populated. This fact is related with

064302-13
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FIG. 13. (Color online) The same as in Fig. 1 but for Pb isotopes
with 126 � N � 184.

the observed faster increase of the bulk contribution than of
the surface contribution in this second region. In the third
interval, with N = 148–176, mainly three orbitals of different
type, i.e., the 1j15/2, 2g7/2, and 3d5/2 orbitals, are populated
between N = 148 and 176. Their impact on the neutron skin
properties is mixed and the slopes of �rbulk

np and �rsurf
np are

similar again. Finally, for N � 176, the surface part grows
faster while the bulk part slightly decreases. In this region,
two levels of the high-n–low-l type (4s1/2 and 3d3/2) rapidly
increase their occupancy. Their influence is magnified by their
relatively large sp mean square radii (〈r2〉nlj > 60 fm2), which
can be seen in panel (c) of Fig. 14. It explains the fast increase
of the surface part of the NST in this region. In spite of the
small multiplicity of these levels (six neutrons only), in the
closed shell nucleus with N = 184 one finds the largest τnlj

values for the 4s1/2 and 3d3/2 orbitals [see Fig. 14(d)].

V. CONCLUSIONS

We have studied the influence of the properties of the single-
particle orbitals of neutrons filling the valence shell on the
nuclear surface and the neutron skin. The spherical density
distributions obtained with the SLy4 mean-field interaction
for the elements Ca, Ni, Zr, Sn, and Pb were examined in our
investigation. Though the basic results emphasized here are
general enough, the fine details may depend to some extent on
the nuclear interaction.
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FIG. 14. (Color online) The same as in Fig. 2 but for Pb isotopes
with 126 � N � 184.

The single-particle mean square radii of neutron valence-
shell orbitals are typically larger than the total neutron mean
square radius of the nucleus. These neutron orbitals impact on
the nuclear surface mainly by shifting or modifying the fall-off
of the neutron density distribution. Hence, the single-particle
shell structure induces changes in the behavior of the neutron
skin thickness with respect to the smooth trend of the neutron
skin described by models of average nuclear properties such
as the droplet model.

The splitting of the neutron skin thickness into bulk
and surface contributions is useful because it allows one to
describe in a relatively simple way how the neutron skin is
formed. When levels with low principal quantum number
n and large angular momentum l are populated, the bulk
part of the neutron skin thickness tends to grow fast. The
neutrons from such orbitals are mainly localized at the surface
of the neutron density. They basically shift the position of
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the neutron surface outwards without altering the density
slope.

The single-particle density distribution of neutrons from
orbitals with high n and low l has a bump beyond the neutron
half-density radius of the nucleus. It enhances the diffuseness
of the nuclear surface and the surface contribution to the
neutron skin thickness. These levels play also a dominant
role in the tail of the neutron density distribution at distances
a few fm outside the surface. They govern the slope of the
exponential fall-off of the neutron density in this region.

Neutron orbitals such as 3p in the valence shell of Sn or
4s in the valence shell of Pb, have a very large single-particle
mean square radius compared with the neighboring neutron
orbitals. It magnifies the role of these levels in increasing
the surface contribution to the neutron skin thickness despite
the comparatively low number of neutrons that can be
accommodated in them.

In this paper we have analyzed in detail the impact of
the single-particle structure on the neutron skin thickness
assuming spherical symmetry. However, this condition is not
always met in the whole range of mass and atomic numbers
considered here, as in the case of some of the Zr isotopes.
It is known that nuclear deformations are another factor that
can induce deviations of the neutron skin thickness from the
average trend [55]. The study of the effects of deformation is
left for a future work.
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