2,060 research outputs found

    Lectins from the Red Marine Algal Species Bryothamnion seaforthii and Bryothamnion triquetrum as Tools to Differentiate Human Colon Carcinoma Cells

    Get PDF
    The carbohydrate-binding activity of the algal lectins from the closely related red marine algal species Bryothamnion triquetrum (BTL) and Bryothamnion seaforthii (BSL) was used to differentiate human colon carcinoma cell variants with respect to their cell membrane glyco-receptors. These lectins interacted with the cells tested in a dose-dependent manner. Moreover, the fluorescence spectra of both lectins clearly differentiated the cells used as shown by FACS profiles. Furthermore, as observed by confocal microscopy, BTL and BSL bound to cell surface glycoproteins underwent intense internalization, which makes them possible tools in targeting strategies

    Modulation of the pharmacological effects of enzymatically-active PLA2 by BTL-2, an isolectin isolated from the Bryothamnion triquetrum red alga

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An interaction between lectins from marine algae and PLA<sub>2 </sub>from rattlesnake was suggested some years ago. We, herein, studied the effects elicited by a small isolectin (BTL-2), isolated from <it>Bryothamnion triquetrum</it>, on the pharmacological and biological activities of a PLA<sub>2 </sub>isolated from rattlesnake venom (<it>Crotalus durissus cascavella</it>), to better understand the enzymatic and pharmacological mechanisms of the PLA<sub>2 </sub>and its complex.</p> <p>Results</p> <p>This PLA<sub>2 </sub>consisted of 122 amino acids (approximate molecular mass of 14 kDa), its pI was estimated to be 8.3, and its amino acid sequence shared a high degree of similarity with that of other neurotoxic and enzymatically-active PLA<sub>2</sub>s. BTL-2 had a molecular mass estimated in approximately 9 kDa and was characterized as a basic protein. In addition, BTL-2 did not exhibit any enzymatic activity.</p> <p>The PLA<sub>2 </sub>and BTL-2 formed a stable heterodimer with a molecular mass of approximately 24–26 kDa, estimated by molecular exclusion HPLC. In the presence of BTL-2, we observed a significant increase in PLA<sub>2 </sub>activity, 23% higher than that of PLA<sub>2 </sub>alone. BTL-2 demonstrated an inhibition of 98% in the growth of the Gram-positive bacterial strain, <it>Clavibacter michiganensis michiganensis </it>(Cmm), but only 9.8% inhibition of the Gram-negative bacterial strain, <it>Xanthomonas axonopodis </it>pv <it>passiflorae </it>(Xap). PLA<sub>2 </sub>decreased bacterial growth by 27.3% and 98.5% for Xap and Cmm, respectively, while incubating these two proteins with PLA<sub>2</sub>-BTL-2 inhibited their growths by 36.2% for Xap and 98.5% for Cmm.</p> <p>PLA<sub>2 </sub>significantly induced platelet aggregation in washed platelets, whereas BTL-2 did not induce significant platelet aggregation in any assay. However, BTL-2 significantly inhibited platelet aggregation induced by PLA<sub>2</sub>. In addition, PLA<sub>2 </sub>exhibited strong oedematogenic activity, which was decreased in the presence of BTL-2. BTL-2 alone did not induce oedema and did not decrease or abolish the oedema induced by the 48/80 compound.</p> <p>Conclusion</p> <p>The unexpected results observed for the PLA<sub>2</sub>-BTL-2 complex strongly suggest that the pharmacological activity of this PLA<sub>2 </sub>is not solely dependent on the presence of enzymatic activity, and that other pharmacological regions may also be involved. In addition, we describe for the first time an interaction between two different molecules, which form a stable complex with significant changes in their original biological action. This opens new possibilities for understanding the function and action of crude venom, an extremely complex mixture of different molecules.</p

    Anopheles aquasalis transcriptome reveals autophagic responses to Plasmodium vivax midgut invasion

    Get PDF
    BACKGROUND: Elimination of malaria depends on mastering transmission and understanding the biological basis of Plasmodium infection in the vector. The first mosquito organ to interact with the parasite is the midgut and its transcriptomic characterization during infection can reveal effective antiplasmodial responses able to limit the survival of the parasite. The vector response to Plasmodium vivax is not fully characterized, and its specificities when compared with other malaria parasites can be of fundamental interest for specific control measures. METHODS: Experimental infections were performed using a membrane-feeding device. Three groups were used: P. vivax-blood-fed, blood-fed on inactivated gametocytes, and unfed mosquitoes. Twenty-four hours after feeding, the mosquitoes were dissected and the midgut collected for transcriptomic analysis using RNAseq. Nine cDNA libraries were generated and sequenced on an Illumina HiSeq2500. Readings were checked for quality control and analysed using the Trinity platform for de novo transcriptome assembly. Transcript quantification was performed and the transcriptome was functionally annotated. Differential expression gene analysis was carried out. The role of the identified mechanisms was further explored using functional approaches. RESULTS: Forty-nine genes were identified as being differentially expressed with P. vivax infection: 34 were upregulated and 15 were downregulated. Half of the P. vivax-related differentially expressed genes could be related to autophagy; therefore, the effect of the known inhibitor (wortmannin) and activator (spermidine) was tested on the infection outcome. Autophagic activation significantly reduced the intensity and prevalence of infection. This was associated with transcription alterations of the autophagy regulating genes Beclin, DRAM and Apg8. CONCLUSIONS: Our data indicate that P. vivax invasion of An. aquasalis midgut epithelium triggers an autophagic response and its activation reduces infection. This suggests a novel mechanism that mosquitoes can use to fight Plasmodium infection.publishersversionpublishe

    Development of Mathematical Models for the Analysis of Hepatitis Delta Virus Viral Dynamics

    Get PDF
    BACKGROUND: Mathematical models have shown to be extremely helpful in understanding the dynamics of different virus diseases, including hepatitis B. Hepatitis D virus (HDV) is a satellite virus of the hepatitis B virus (HBV). In the liver, production of new HDV virions depends on the presence of HBV. There are two ways in which HDV can occur in an individual: co-infection and super-infection. Co-infection occurs when an individual is simultaneously infected by HBV and HDV, while super-infection occurs in persons with an existing chronic HBV infection. METHODOLOGY/PRINCIPAL FINDINGS: In this work a mathematical model based on differential equations is proposed for the viral dynamics of the hepatitis D virus (HDV) across different scenarios. This model takes into consideration the knowledge of the biology of the virus and its interaction with the host. In this work we will present the results of a simulation study where two scenarios were considered, co-infection and super-infection, together with different antiviral therapies. Although, in general the predicted course of HDV infection is similar to that observed for HBV, we observe a faster increase in the number of HBV infected cells and viral load. In most tested scenarios, the number of HDV infected cells and viral load values remain below corresponding predicted values for HBV. CONCLUSIONS/SIGNIFICANCE: The simulation study shows that, under the most commonly used and generally accepted therapy approaches for HDV infection, such as lamivudine (LMV) or ribavirine, peggylated alpha-interferon (IFN) or a combination of both, LMV monotherapy and combination therapy of LMV and IFN were predicted to more effectively reduce the HBV and HDV viral loads in the case of super-infection scenarios when compared with the co-infection. In contrast, IFN monotherapy was found to reduce the HDV viral load more efficiently in the case of super-infection while the effect on the HBV viral load was more pronounced during co-infection. The results suggest that there is a need for development of high efficacy therapeutic approaches towards the specific inhibition of HDV replication. These approaches may additionally be directed to the reduction of the half-life of infected cells and life-span of newly produced circulating virions
    • 

    corecore