3,361 research outputs found

    Clinical and biochemical response to neridronate treatment in a patient with osteoporosis-pseudoglioma syndrome (OPPG)

    Get PDF
    Osteoporosis-pseudoglioma syndrome (OPPG) is a rare autosomal recessive syndrome characterized by juvenile-onset osteoporosis and ocular abnormalities due to a low-density lipoprotein receptor-related protein 5 (LRP5) gene mutation. Treatment with bisphosphonates, particularly with pamidronate and risedronate, has been reported to be of some efficacy in this condition. We report on a patient with OPPG due to an LRP5 gene mutation, who showed an encouraging response after a 36-month period of neridronate therapy. We report a case of a patient treated with bisphosphonates. Bisphosphonates should be administered in OPPG patients as a first-line therapy during early childhood

    Association between spondylolisthesis and L5 fracture in patients with osteogenesis imperfecta

    Get PDF
    To investigate if an association between spondylolisthesis and L5 fracture occurs in patients affected by Osteogenesis Imperfecta (O.I.). Methods Anteroposterior and lateral radiograms were performed on the sample (38 O.I. patients, of whom 19 presenting listhesis); on imaging studies spondylolisthesis was quantified according to the Meyerding classification. Genant’s semiquantitative classification was applied on lateral view to evaluate the L5 fractures; skeleton spinal morphometry (MXA) was carried out on the same images to collect quantitative data comparable and superimposable to Genant’s classification. The gathered information were analyzed through statistical tests (O.R., χ 2 test, Fisher’s test, Pearson’s correlation coefficient). Results The prevalence of L5 fractures is 73.7 % in O.I. patients with spondylolisthesis and their risk of experiencing such a fracture is twice than O.I. patients without listhesis (OR 2.04). Pearson’s χ 2 test demonstrates an association between L5 spondylolisthesis and L5 fracture, especially with moderate, posterior fractures (p = 0.017) and primarily in patients affected by type IV O.I. Conclusions Spondylolisthesis represents a risk factor for the development of more severe and biconcave/posterior type fractures of L5 in patients suffering from O.I., especially in type IV. This fits the hypothesis that the anterior sliding of the soma of L5 alters the dynamics of action of the load forces, localizing them on the central and posterior heights that become the focus of the stress due to movement of flexion–extension and twisting of the spine. As a result, there is greater probability of developing an important subsidence of the central and posterior walls of the soma

    Imaging interactions between the immune and cardiovascular systems in vivo by multiphoton microscopy

    Get PDF
    Several recent studies in immunology have used multiphoton laser-scanning microscopy to visualise the induction of an immune response in real time in vivo. These experiments are illuminating the cellular and molecular interactions involved in the induction, maintenance and regulation of immune responses. Similar approaches are being applied in cardiovascular research where there is an increasing body of evidence to support a significant role for the adaptive immune system in vascular disease. As such, we have begun to dissect the role of T lymphocytes in atherosclerosis in real time in vivo. Here, we provide step-by-step guides to the various stages involved in visualising the migration of T cells within a lymph node and their infiltration into inflamed tissues such as atherosclerotic arteries. These methods provide an insight into the mechanisms involved in the activation and function of immune cells in vivo

    Charge redistribution in the formation of one-dimensional lithium wires on Cu(001)

    Get PDF
    We describe the formation of one-dimensional lithium wires on a Cu(001) substrate, providing an atomic-scale description of the onset of metallization in this prototypical adsorption system. A combination of helium atom scattering and density-functional theory reveals pronounced changes in the electronic charge distribution on the formation of the c(5√2×√2)R45° Li/Cu(001) structure, as in-plane bonds are created. Charge donation from Li-substrate bonds is found to facilitate the formation of stable, bonded, and depolarized chains of Li adatoms that coexist with an interleaved phase of independent adatoms. The resultant overlayer has a commensurate charge distribution and lattice modulations but differs fundamentally from structurally similar charge-density wave systems

    On Mixed Convection in a Horizontal Channel, Viscous Dissipation and Flow Duality

    Get PDF
    The conditions defining a stationary fluid flow may lead to a multiplicity of solutions. This circumstance is widely documented in the literature when mixed convection in a vertical channel or duct is accompanied by an important effect of viscous dissipation. Usually, there are double stationary solutions with a parallel velocity field which satisfy given temperature boundary conditions and with a prescribed mass flow rate. However, in a vertical internal flow, the dual solutions can be determined only numerically as they do not have a closed analytical form. This study shows that, in a horizontal channel, stationary mixed convection with viscous dissipation shows up dual flow branches whose mathematical expressions can be determined analytically. The features of these dual flows are discussed

    Dissipation instability of Couette-like adiabatic flows in a plane channel

    Full text link
    The mixed convection flow in a plane channel with adiabatic boundaries is examined. The boundaries have an externally prescribed relative velocity defining a Couette-like setup for the flow. A stationary flow regime is maintained with a constant velocity difference between the boundaries, considered as thermally insulated. The effect of viscous dissipation induces a heat source in the flow domain and, hence, a temperature gradient. The nonuniform temperature distribution causes, in turn, a buoyancy force and a combined forced and free flow regime. Dual mixed convection flows occur for a given velocity difference. Their structure is analysed where, in general, only one branch of the dual flows is compatible with the Oberbeck-Boussinesq approximation, for realistic values of the Gebhart number. A linear stability analysis of the basic stationary flows with viscous dissipation is carried out. The stability eigenvalue problem is solved numerically, leading to the determination of the neutral stability curves and the critical values of the P\'eclet number, for different Gebhart numbers. An analytical asymptotic solution in the special case of perturbations with infinite wavelength is also developed.Comment: 24 pages, 11 figure

    Thermal Convection of an Ellis Fluid Saturating a Porous Layer with Constant Heat Flux Boundary Conditions

    Get PDF
    The present work analyzes the thermal instability of mixed convection in a horizontal porous channel that is saturated by a shear-thinning fluid following Ellis’ rheology. The fluid layer is heated from below by a constant heat flux and cooled from above by the same heat flux. The instability of such a system is investigated by means of a small-disturbances analysis and the resulting eigenvalue problem is solved numerically by means of a shooting method. It is demonstrated that the most unstable modes on the instability threshold are those with infinite wavelength and an analytical expression for such conditions is derived from an asymptotic analysis. Results show that the non-Newtonian character of the fluid has a destabilizing role

    Unstable Convection in a Vertical Double–Layer Porous Slab

    Get PDF
    A convective stability analysis of the flow in a vertical fluid-saturated porous slab made of two layers with different thermophysical properties is presented. The external boundaries are isothermal with one of them impermeable while the other is open to an external fluid reservoir. This study is a development of previous investigations on the onset of thermal instability in a vertical heterogeneous porous slab where the heterogeneity may be either continuous or piecewise as determined by a multilayer structure. The aim of this paper is investigating whether a two-layer structure of the porous slab may lead to the onset of cellular convection patterns. The linear stability analysis is carried out under the assumption that one porous layer has a thermal conductivity much higher than the other layer. This assumption may be justified for the model of a heat transfer enhancement system involving a saturated metal foam. A flow model for the natural convection based on Darcy’s momentum transfer in a porous medium is adopted. The buoyancy-induced basic flow state is evaluated analytically. Small-amplitude two-dimensional perturbations of the basic state are introduced, thus leading to a linear set of governing equations for the disturbances. A normal mode analysis allows one to formulate the stability eigenvalue problem. The numerical solution of the stability eigenvalue problem provides the onset conditions for the thermal instability. Moreover, the results evidence that the permeability ratio of the two layers is a key parameter for the critical conditions of the instability
    • …
    corecore