177 research outputs found

    Cardiovascular fitness strengthening using portable device

    Full text link
    © 2016 IEEE. The paper describes a reliable and valid Portable Exercise Monitoring sysetm developed using TI eZ430-Chronos watch, which can control the exercise intensity through audio stimulation in order to increase the Cardiovascular fitness strengthening

    Production of radiometals in a liquid target

    Get PDF
    Introduction Access to radiometals suitable for labeling novel molecular imaging agents requires that they be routinely available and inexpensive to obtain. Proximity to a cyclotron center outfitted with solid target hardware, or to an isotope generator for a radiometal of interest is necessary, both of which can be significant hurdles in availability of less common isotopes. Herein, we describe the production of 44Sc, 68Ga, 89Zr, 86Y and 94mTc in a solution target which allows for the production of various radiometallic isotopes, enabling rapid isotope-biomolecule pairing optimization for tracer development. Work on solution targets has also been performed by other groups [e.g. 1, 2]. Material and Methods Solutions containing a high concentration of natural-abundance zinc nitrate, yttrium nitrate, calcium nitrate [3], strontium nitrate or ammonium heptamolybdate [4] were irradiated on a 13 MeV cyclotron using a standard liquid target. Some of the solutions contained additional hydrogen peroxide or nitric acid to improve solubility and reduce pressure rise in the target during irradiation. Yields calculated using theoretical cross sections (EMPIRE [5]) were compared to the measured yields. In addition, we tested a thermo-syphon target design for the production of 44Sc. Chemical separation of the product from the target material was carried out on a remote apparatus modeled after that of Siikanen [6]. Results and Conclusion The proposed approach enabled the production of quantities sufficient for chemical or biological studies for all metals discussed. In the case of 68Ga, activity up to 480 ± 22 MBq was obtained from a one hour run with a beam current of 7 µA, potentially enabling larger scale clinical production. Considering all reactions, the ratio of theoretical saturation yields to experimental yields ranges from 0.8 for 94mTc to 4.4 for 44Sc. The thermo-syphon target exhibited an increase of current on the target by a factor of 2.5 and an increase in yield by a factor of five for the production of 44Sc. Separation methods were developed for all isotopes and separation efficiency ranges from 71 ± 1 % for 94mTc to 99 ± 4 % for 86Y. 44Sc, 68Ga, and 86Y were successfully used in labeling studies with a model 1,4,7,10-tetrazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelate, while 89Zr coordination behavior was tested using desferrioxamine-alkyne (DFO-alkyne). In summary, we present a promising new method to produce a suite of radiometals in a liquid target. Future work will continue to expand the list of radiometals and to apply this approach to the development of various peptide, protein and antibody radiotracers

    Time-Frequency Based Features for Classification of Walking Patterns

    Full text link
    The analysis of gait data has been a challenging problem and several new approaches have been proposed in recent years. This paper describes a novel front-end for classification of gait patterns using data obtained from a tri-axial accelerometer. The novel features consist of delta features, low and high frequency signal variations and energy variations in both frequency bands. The back-end of the system is a Gaussian mixture model based classifier. Using Bayesian adaptation, an overall classification accuracy of 96.1 % was achieved for five walking patterns in six subjects. Index Terms—Gait patterns, accelerometry, ambulatory monitoring, Gaussian mixture model

    Nonparametric Model Prediction for Intelligent Regulation of Human Cardiorespiratory System to Prescribed Exercise Medicine

    Full text link
    © 2013 IEEE. Intelligent regulation for human exercise behaviors becomes significantly necessary for exercise medicine after the COVID-19 epidemic. The key issue of exercise regulation and its potential development for intelligent exercise is to describe human exercise physiological behaviors in a more accurate and sufficient manner. Here, a non-parametric modeling method with kernel-based regularization is presented to estimate cardiorespiratory biomarkers (i.e., oxygen uptake ( V˙{\dot {\text {V}}} O2) and carbon dioxide output ( V˙{\dot {\text {V}}} CO2) by merely non-invasively monitoring the indicator of exercise intensity (e.g., walking speed). Using the kernel-based non-parametric modeling, we show that V˙{\dot {\text {V}}} O2 and V˙{\dot {\text {V}}} CO2 behaviors in response to continuous and diversified exercise intensity stimulations can be quantitatively described. Furthermore, the dataset from the stairs experiment with a proper protocol is applied in the kernel parameter selection, and this selection approach is compared with the numerical simulation approach. The comparison results illustrate an improvement of 4.18% for oxygen uptake and 7.63% for carbon dioxide output in a half period, and 11.00% for oxygen uptake and 12.60% for carbon dioxide output in one period when using the kernel parameter selected from the stairs exercise. Moreover, the advantages of using the non-parametric model, the necessity of sufficient stimulation for identification and the importance of the kernel regularization term are also addressed in this paper. This method provides fundamental work for the practice of intelligent exercise

    Ultrathin compound semiconductor on insulator layers for high performance nanoscale transistors

    Full text link
    Over the past several years, the inherent scaling limitations of electron devices have fueled the exploration of high carrier mobility semiconductors as a Si replacement to further enhance the device performance. In particular, compound semiconductors heterogeneously integrated on Si substrates have been actively studied, combining the high mobility of III-V semiconductors and the well-established, low cost processing of Si technology. This integration, however, presents significant challenges. Conventionally, heteroepitaxial growth of complex multilayers on Si has been explored. Besides complexity, high defect densities and junction leakage currents present limitations in the approach. Motivated by this challenge, here we utilize an epitaxial transfer method for the integration of ultrathin layers of single-crystalline InAs on Si/SiO2 substrates. As a parallel to silicon-on-insulator (SOI) technology14,we use the abbreviation "XOI" to represent our compound semiconductor-on-insulator platform. Through experiments and simulation, the electrical properties of InAs XOI transistors are explored, elucidating the critical role of quantum confinement in the transport properties of ultrathin XOI layers. Importantly, a high quality InAs/dielectric interface is obtained by the use of a novel thermally grown interfacial InAsOx layer (~1 nm thick). The fabricated FETs exhibit an impressive peak transconductance of ~1.6 mS/{\mu}m at VDS=0.5V with ON/OFF current ratio of greater than 10,000 and a subthreshold swing of 107-150 mV/decade for a channel length of ~0.5 {\mu}m

    GP-support by means of AGnES-practice assistants and the use of telecare devices in a sparsely populated region in Northern Germany – proof of concept

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In many rural regions in Germany, the proportion of the elderly population increases rapidly. Simultaneously, about one-third of the presently active GPs will retire until 2010. Often it is difficult to find successors for vacant GP-practices. These regions require innovative concepts to avoid the imminent shortage in primary health care.</p> <p>The AGnES-concept comprises the delegation of GP-home visits to qualified AGnES-practice assistants (AGnES: GP-supporting, community-based, e-health-assisted, systemic intervention). Main objectives were the assessment of the acceptance of the AGnES-concept by the participating GPs, patients, and AGnES-practice assistants, the kind of delegated tasks, and the feasibility of home telecare in a GP-practice.</p> <p>Methods</p> <p>In this paper, we report first results of the implementation of this concept in regular GP-practices, conducted November 2005 – March 2007 on the Island of Rügen, Mecklenburg-Western Pomerania, Germany. This study was meant as a proof of concept.</p> <p>The GP delegated routine home-visits to qualified practice employees (here: registered nurses). Eligible patients were provided with telecare-devices to monitor disease-related physiological values.</p> <p>All delegated tasks, modules conducted and questionnaire responses were documented. The participating patients were asked for their acceptance based on standardized questionnaires. The GPs and AGnES-practice assistants were asked for their judgement about different project components, the quality of health care provision and the competences of the AGnES-practice assistants.</p> <p>Results</p> <p>550 home visits were conducted. 105 patients, two GPs and three AGnES-practice assistants (all registered nurses) participated in the project. 48 patients used telecare-devices to monitor health parameters. 87.4% of the patients accepted AGnES-care as comparable to common GP-care. In the course of the project, the GPs delegated an increasing number of both monitoring and interventional tasks to the AGnES-practice assistants. The GPs agreed that delegating tasks to a qualified practice assistant relieves them in their daily work.</p> <p>Conclusion</p> <p>A part of the GPs home visits can be delegated to AGnES-practice assistants to support GPs in regions with an imminent or already existing undersupply in primary care. The project triggered discussions among the institutions involved in the German healthcare system and supported a reconciliation of the respective competences of physicians and other medical professions.</p

    A Wireless Health Outcomes Monitoring System (WHOMS): development and field testing with cancer patients using mobile phones

    Get PDF
    BACKGROUND: Health-Related Quality of Life assessment is widely used in clinical research, but rarely in clinical practice. Barriers including practical difficulties administering printed questionnaires have limited their use. Telehealth technology could reduce these barriers and encourage better doctor-patient interaction regarding patient symptoms and quality-of-life monitoring. The aim of this study was to develop a new system for transmitting patients' self-reported outcomes using mobile phones or the internet, and to test whether patients can and will use the system via a mobile phone. METHODS: We have developed a prototype of a Wireless Health Outcomes Monitoring System, which allows structured questionnaires to be sent to the patient by their medical management team. The patients' answers are directly sent to an authorised website immediately accessible by the medical team, and are displayed in a graphic format that highlights the patient's state of health. In the present study, 97 cancer inpatients were asked to complete a ten-item questionnaire. The questionnaire was delivered by display on a mobile phone, and was answered by the patients using the mobile phone keypad. RESULTS: Of the 97 patients, 56 (58%) attempted the questionnaire, and all of these 56 completed it. Only 6% of the total number of questions were left unanswered by patients. Forty-one (42%) patients refused to participate, mostly due to their lack of familiarity with mobile phone use. Compared with those who completed the questionnaire, patients who refused to participate were older, had fewer years of education and were less familiar with new communications technology (mobile phone calls, mobile phone SMS, internet, email). CONCLUSION: More than half of the patients self-completed the questionnaire using the mobile phone. This proportion may increase with the use of multichannel communications which can be incorporated into the system. The proportion may also increase if the patient's partner and/or family were able to assist the patient with using the technology. These preliminary results encourage further studies to identify specific diseases or circumstances where this system could be useful in patients' distance monitoring. Such a system is likely to detect patient suffering earlier, and to activate a well-timed intervention
    corecore